Applications sought for Assistant Extension Professor and Assistant Professor of Animal Science at the University of Maine

The University of Maine Cooperative Extension invites applications for a full-time, fiscal-year, continuing contract eligible faculty appointment as Assistant Extension Professor and Assistant Professor of Animal Science. 

This position is an 85% appointment with UMaine Extension and a 15% teaching appointment through the University of Maine School of Food and Agriculture.

The successful candidate will be located on the campus of the University of Maine in Orono, Maine.

The faculty member in this position will develop and lead educational outreach and applied research with an emphasis on dairy science; work with other UMaine faculty and professionals, advisory boards and volunteers to offer off-campus programs addressing the educational needs of the Maine dairy industry and other agricultural industries; teach undergraduate courses in the School of Food and Agriculture (SFA).

For a complete job description and to apply: https://umaine.hiretouch.com/job-details?jobid=66728

Search Timeline is as follows:
Review of applications to begin: April 15, 2021
Screening interviews to begin no earlier than: April 30, 2021
On-site (or virtual visit) interviews to begin no earlier than: May 15, 2021
Tentative start date: July 1, 2021

Watch the Microbes and Social Equity seminar from Mar 3rd

Connecting environmental microbiomes to social (in)equity across temporal and ecological scales  

Dr. Erin Eggleston and Dr. Mallory Choudoir

March 3, 2021, 12:00 – 13:00 EST. 

Watch the recording.

Dr. Erin Eggleston, PhD, is an assistant professor of biology at Middlebury College. Her research focuses on molecular microbial ecology. Recent projects include mercury-cycling microbes in the soils of the St. Lawrence River, coral microbiome and reef resilience, and community dynamics of harmful cyanobacterial blooms. For more information check out her lab website (https://sites.middlebury.edu/eggleston/) or follow on Twitter @EggErin.

Dr. Mallory Choudoir, PhD, is a microbial ecologist interested in the evolutionary processes that determine patterns of microbial diversity across space and time. She is currently a postdoc at the University of Massachusetts Amherst researching microbial adaptation to long-term soil warming. Find her on twitter @malladpated or https://www.malloryjchoudoir.com/

About the seminar: Issues of social equity when it comes to environmental microbiomes and ecosystem ecology are tied with anthropogenic land use change. These land use changes occur across chronic and acute time scales, and ecological outcomes are both direct and indirect. This seminar will frame the interaction of microbiome research within the context of issues of environmental and social (in)justice pertaining to anthropogenic land use change. We will highlight current research and invite discussion on perspective research. 

About the series: Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. This speaker series explores the way that microbes connect public policy, social disparities, and human health, as well as the ongoing research, education, policy, and innovation in this field.  The spring speaker series will pave the way for a symposium on “Microbes, Social Equity, and Rural Health” in summer 2021.

Tindall’s first paper was accepted!

I’m pleased to announce that master’s student Tindall Ouverson’s first manuscript was accepted for publication!

Photo of woman in front of mountains

Tindall is a Master’s of Science in the Department of Land Resources and Environmental Sciences at Montana State University. Her graduate advisers are Drs. Fabian Menalled and Tim Seipel. Her research focuses on the response of soil microbial communities to cropping systems and climate change in semiarid agriculture. 

I have been mentoring Tindall as a graduate committee member since she began in fall 2019, teaching her laboratory and analytical skills in microbial ecology, DNA sequencing, and bioinformatic analysis. We first met when she came to visit when I was working in Oregon, and since then have connected remotely. She has a flair for bioinformatics analysis, and a passion for sustainable agricultural development. She plans to defend her thesis in 2021, and then to further her career in sustainable agriculture in Montana.


Tindall Ouverson, Jed Eberly, Tim Seipel, Fabian D. Menalled, Suzanne L. Ishaq. 2021. Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains.  Frontiers in Sustainable Food Systems.  Article. Invited submission to Plant Growth-Promoting Microorganisms for Sustainable Agricultural Production  special collection.

Abstract

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a five-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.

Watch the Microbes and Social Equity seminar from Feb 24th

The human microbiome and cancer risk: setting the stage for innovative studies to address cancer disparities 

Dr. D. Armen Byrd, MPH, PhD

February 24, 2021, 12:00 – 13:00 EST. 

Watch the recording.

About the speaker: Dr. Byrd received a B.S. in biology and an M.P.H. in epidemiology from the University of Florida. She completed her Ph.D. in epidemiology at Emory University, where her dissertation research focused on the development and validation of novel, inflammation biomarker panel-weighted dietary and lifestyle inflammation scores, and their associations with colorectal neoplasms. In January 2019, she joined the National Cancer Institute Division of Cancer Epidemiology and Genetics as a postdoctoral fellow. During her time there, she conducted methodologic microbiota studies and investigated associations of the microbiota with cancer risk and of diet with the gut metabolome. In January 2021, she joined Moffitt Cancer Center as an Assistant Member in the Department of Cancer Epidemiology, where she will continue to contribute to the reduction of cancer disparities using an integrative, interdisciplinary approach to study microbiota-mediated mechanisms for cancer risk among diverse populations.  

Twitter: @d_armen_byrd 

About the seminar: This seminar will focus on current understanding and future directions for targeting health disparities with gastrointestinal microbiota research using a multidimensional framework. Examples will be provided from the colorectal and breast cancer literature. 

About the series: Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. This speaker series explores the way that microbes connect public policy, social disparities, and human health, as well as the ongoing research, education, policy, and innovation in this field.  The spring speaker series will pave the way for a symposium on “Microbes, Social Equity, and Rural Health” in summer 2021.

A clock with wings flying in the air, with another one in the background out of focus. The background is a blurry tan.

Reflecting on “suggested deadlines” for assignments

Over the Fall 2020 semester, I changed my assignment deadline policy, creating “suggested deadlines” instead of enforced ones. I altered the language to “suggested deadline” in my syllabus semester timeline (in which I provide due dates for all assignments), I left submission portals open in the online teaching software, and I did not manually penalize grades for lateness. I made the change out of practicality for the fall semester, and I was personally pleased by the results; however, I wanted to hear from students. After being able to formally obtain student feedback during course evaluations, I wanted to reflect on that change and how I will implement it in future courses.

Previously, when grading policies were up to me, I accepted late assignments with a possible -10% grade penalty reduction per day, although I would waive it for a variety of circumstances. It was easy to enforce using online teaching software which timestamped submissions. This policy seemed to motivate some students, but in retrospect, it made students feel like they had to share their reasons for lateness and justify why they needed an extension. Not only did this late assignment policy increase the number of emails I received and time spent replying that yes, I would still accept it, but it also meant that students were sharing more personal information with me. I suspect that students who did not ask for deadline extensions probably had a reason but didn’t want to share than information in asking for an extension, and really, it is none of my business what else is going on in their life.

However, I made the decision to allow any assignments to be turned in after the due date without a penalty, in part because the pandemic shifted the amount and type of work most students were doing. Many of them reported an increased workload, having to attend remote classes in their car, trouble with internet access with so many other users on their network, and of course, power and internet outages are common in Maine when trees topple utility lines. If I had enforced assignment deadlines, then a third to a half of my students were in danger of failing the course because of lack of work, but not because of poor quality of work. This was unreasonable to me, especially in my undergraduate research course where I would be effectively be penalizing students for delays caused by their research mentors or haled research on campus.

So, I made the decision to trust my students to manage their own motivations and time management. After all, they are legal adults, they are not first years, and they have chosen to continue their education despite the financial burden and other constraints. More than that, almost all of my graded assignments with significant weight in the class are essay based, which means I can get a feel for the students’ writing voice and it is really easy to identify plagiarism by the change in tone or maturity of the writing. If being able to turn in an assignment late meant students’ could copy each other’s assignments, I should be able to catch it even without the online plagiarism checking software.

I was concerned that I would receive all the assignments on the very last day, and was dreading the avalanche of grading that would unleash on me. Instead, assignments trickled in on a regular basis, several hours to several months late depending on the students’ circumstances, some of which were later disclosed to me. Instead of getting sloppy, thrown-together assignments, I think the quality of writing and the depth of student critical thinking were improved. Students later reported being able to spend more time on the assignment when they had control over when that time could be spent. And, despite having the most students in the most difficult semester to get through, I discovered no instances of plagiarism.

I think I will make the move to suggested deadlines semi-permanent (some deadlines will be enforced based on if it is time-sensitive). The online teaching software I use can be set to assign a 0 to missing assignments, to email me when submissions are received, and to add conditions to submission portals, such as having first submitted another assignment or having received feedback on a previous assignment (like a previous draft of a paper). I can schedule automatic email reminders about assignments, email only students who are missing assignments, and students can check their grades and assignment lists online at any time. Not only does this dramatically reduce the time I spend chasing after assignments, but it gives students more agency in being able to participate in the class on their own time.

Certainly not every class can be structured this way or allow for flexible deadlines. But, I think a lot of them could be, and I think in most cases it would improve student engagement and learning outcomes. Below, you can find the comments on my two fall course evaluations, and you can check out my previous posts on curricula development or my teaching statements.


For much of the fall semester, assignment deadlines were open ended. Do you think keeping open ended deadlines (as in, you turn in things when they are ready but [not] on a specific date) next year would make this class better? Do you think you would be able to keep up with assignments without deadlines? Or do you think the deadlines help keep you on track?

My question from the course evaluations for this fall

Comments

  • I think the soft deadlines kept me in check, however it’s nice to know that if things unexpectedly get crazy for me that I won’t be penalized for taking extra time to make sure that I submit quality work.
  • I very much appreciated the flexibility in deadlines for this class as many other classes ramp up at the end of the semester. I felt as though I could control my workload with the assignments set up like this, and would recommend keeping the deadlines as suggestions to where you should be up to date in the course, but the actual submission deadline remains later in the semester.
  • You could do once a month check ins or something to verify nobody is completely slacking off. Maybe have three major deadlines to force people to keep up – one at the end of October, end of November and then the final submission?
  • The deadlines really helped keep me on track. Dr. Sue Ishaq was more than lenient with due dates and the work load, so I do not think anyone would have an excuse to not do well in this course (although this was really helpful with the troubling times humanity is facing). I think being more strict would be more fair to her as a professor and would help students not take advantage of being able to put things off and not learn the material.
  • I think the open ended deadlines was really helpful. It allowed me to put the time in when I could rather than rushing to get it done and turned in for the due date.
  • I appreciated having the due dates so I could try to get stuff in at a reasonable time but also that the deadlines were flexible so if something came up I wouldn’t turn in something I wasn’t happy with. I had a different class with no deadlines and it was horrible, I need the structure to be there but to also have the leniency for when things aren’t going well.
  • In this new quarantined world, the open deadlines were essential to academic success. While I didn’t struggle in this class necessarily, I did struggle in chemistry, pre calculus and lab with out the aid of study groups, math labs, and lab partners. Having open dead lines in this course not only affected my academic success in this course, but it also snow balled in a positive way and helped my GPA overall.
  • I think open ended deadlines with a suggested deadline would be the most helpful, because it will reduce the stress of deadlines, and allow for leeway in the case of multiple courses having work do on the same day, but it also gives a time frame around when the work should be done
  • The lack of deadlines required self–discipline but also removed the daunting aspect of the due date, which I often find myself deterred by and ultimately more likely to put off the work. I felt that the assignments were more inviting this way.
  • I think that this semester it was very beneficial to have the open ended deadlines. For me personally, I prefer to have deadlines to keep me on track, but I appreciate the flexibility of the open–ended deadlines.
  • I think having the open ended, suggestive deadlines made for a much easier semester. It took off a lot of stress to know that I could have an extra day if needed. Sometimes we get peaks in the semester where we’re slammed with work and knowing that if I needed an extra day or two to complete an assignment was really reassuring.
  • Thank you for being understanding on deadlines as this semester has been crazy, although the soft deadlines kept me on track without penalizing me for taking extra time if needed.
  • I think ended open deadlines do help due to things become crazier as the whole covid thing continues
  • I feel that open ended deadlines next year would make this class better because due to recent events in the world it is sometimes difficult communicating with project mentors. By having open ended deadlines, I know when it is supposed to be due, but if I am missing some information from someone on the project I do not worry as much about getting in trouble for handing it in late.
  • yes this is hard to juggle long term projects with weekly class deadlines. So open ended is the best for this class.
  • I believe the structure of fall semester deadlines was great.
  • I feel like open ended deadlines are very helpful because you would be able create better quality work with your research. I feel like I would be about to keep up with work without deadlines or just create the deadline for the end of the semester and put reminders.
  • I think a more strict set of deadlines could’ve been helpful as far as tracking progress. Exceptions could still be made for those struggling on a topic, or who are unable to start for some reason out of their control.
  • This semester, while everyone has been adjusting to the new way of pandemic life, the open ended deadlines were extremely helpful and stress relieving.
  • yes I think there should be soft deadlines, there is a date that it should be done but we didn’t have to have it done by then
  • Having a general guideline about when things should be turned in has been helpful, but keeping the deadlines open ended has relieved a lot of stress and has enabled me to produce better work because I was not rushed.
  • The deadlines kept me on track and having no deadlines would have me just turn everything in at the end which is bad.
  • I liked the deadlines. I would have kept all the work till the last minute if we didn’t. However, the open ended deadlines meant that even if you were behind, you wouldn’t be penalized which really helped.
  • I think open ended deadlines are a great idea because it allowed me to not feel pressured to submit something that I did not feel was ready. Without that stress, I was able to submit all of my assignments on time with the open ended deadline and not during the later one, which was helpful!

Featured Image Credit

Watch the Microbes and Social Equity seminar from Feb 17th

Extended Health

Dr. Joshua August (Gus) Skorburg, PhD

February 17, 2021, 12:00 – 13:00 EST. 

Watch the recording.

About the speaker: Dr. Joshua August (Gus) Skorburg is Assistant Professor of Philosophy, Academic Co-Director of the Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE-AI), and Faculty Affiliate at the One Health Institute at the University of Guelph in Ontario, Canada. He is also Adjunct Professor in the Fuqua School of Business at Duke University. He received his PhD in Philosophy in 2017 from the University of Oregon. His research spans topics in applied ethics and moral psychology.  

https://www.uoguelph.ca/arts/people/joshua-august-gus-skorburg

About the seminar:  Dominant views about the nature of health and disease tend to assume the existence of a fixed, stable, individual organism as the bearer of health and disease states, and as such, the appropriate target of medical therapy and ethical concern. However, recent developments in microbial biology, neuroscience, and social and personality psychology have produced a novel understanding of the individual and its fluid boundaries. Drawing on converging evidence from these disciplines, I will argue that certain features of our biological and social environment can be so tightly integrated as to constitute a unit of care extending beyond the intuitive boundaries of skin and skull. Call this the Hypothesis of Extended Health (HEH). Using the example of obesity as a case study, I show how HEH is well positioned to accommodate recent research on both the human microbiome and relationship partners. I conclude by suggesting that HEH helps us to break free from unhelpful dichotomous thinking about obesity – between individual behaviours (e.g., restraint, diet, exercise) or constraining socio-economic structures (e.g., food deserts, advertising).

About the series: Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. This speaker series explores the way that microbes connect public policy, social disparities, and human health, as well as the ongoing research, education, policy, and innovation in this field.  The spring speaker series will pave the way for a symposium on “Microbes, Social Equity, and Rural Health” in summer 2021.

Watch the Microbes and Social Equity seminar from Feb 10th

An Indigenous Micro- to Meta-Narrative: Microbes and Social Equity

Dr. Nicole Redvers, ND, MPH

February 10, 2021, 12:00 – 13:00 EST. 

Watch the recording.

About the seminar: Indigenous Peoples have scientific narratives and traditions that span thousands of years rooted within concepts of relationship. The microbial microcosm itself is a lens of relationship that situates us as humans within our own communities and in the biome of the planet. How these relationships intersect and how we view them as an evolution of knowledge in theory and practice impacts how we view equity and its applications in the scientific process. This seminar will seek to bridge Indigenous knowledge traditions and scientific discourse with the intent of situating microbes and social equity within a larger relationship within research and practice.

About the series: Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. This speaker series explores the way that microbes connect public policy, social disparities, and human health, as well as the ongoing research, education, policy, and innovation in this field.  The spring speaker series will pave the way for a symposium on “Microbes, Social Equity, and Rural Health” in summer 2021.

Microbes and Social Equity at UMaine

Last week, I chatted about Microbes and Social Equity with Ali Tobey, Marketing and Communications Graduate Assistant for the Office of the Vice President for Research and Dean of the Graduate School at the University of Maine. The MSE working group has been meeting for a year to discuss how microorganisms are what connects us to each other or to the environment, how microbes are involved in so much of human health, how disparities in access to basic needs can affect your health and your microbes, and how social policy can be used to resolve social inequity and improve health for all.

This spring, the MSE group and the University of Maine Institute of Medicine are hosting a semester-long speaker series. The talks range from basic to applied science, from research to education to medical practice, and touch on a variety of topics. The series is free, and open to the public, but registration is required.

The full list of speaker and registration links for the Microbes and Social Equity spring 2021 speaker series can be found here, and Ali’s piece is below:

Reblog of the story by Ali Tobey, University of Maine

Of mice and many samples

The first mouse study of the Ishaq Lab (in conjunction with the Zhang and Li labs at Husson University) has concluded phase 1, which means that over a few short days, an incredible number of samples needed to be collected, preserved, and processed for further laboratory work (phase 2) which will take through the summer to complete.

Sample collection was made more challenging by the pandemic, because we needed to distance as much as possible, disinfect objects and surfaces, wear masks, and increase the amount of ventilation in a space. Luckily, this type of work lends itself to these types of precautions – not only did we already need to wear a significant amount of protective gear to work with mice or handle their feces, but biosafety work like this requires higher than usual ventilation and frequent sanitation of objects and spaces. Since some of this work could be performed simultaneously in different rooms, we were able to use both Ishaq lab spaces and the ‘mouse house’ to keep people distanced.

During the 40-day mouse study, ‘Team Broccoli’ collected:

  • 640 mouse body weight data measurements
  • 433 fecal samples, which were archived for possible culturing and/or sequencing
  • 400 additional samples collected over two days:
    • 40 blood samples for immune factor identification
    • 360 gut samples
      • Of which, 200 were PMA treated within 12 hours of collection for use in DNA sequencing
      • 160 of which will be cultured to isolate bacteria. This will create 1 ~ 8 isolates per sample that will need to be grown on its own plate, transferred to broth media, and then frozen with glycerol at -80C until they can be revived and studied later this year.

How to choose a graduate program in STEM

I frequently receive requests for advice on choosing graduate programs, or to work in my lab, and have conversations with graduates who are struggling with program, department, or university policies which they were not aware of when they began. I decided to put those thoughts and conversations in one place, to create a non-exhaustive list of advice and considerations for choosing a graduate program. This will mostly be applicable to STEM programs, but some aspects will be universal.

Some of this will be discouraging, because graduate school is not a thing to be entered into lightly. But, I also believe that anyone can participate in science, and that many times when people think they couldn’t succeed in science, it’s not because they aren’t good enough, it’s more of a problem with an environment that selects for just one type of researcher.

Define your goal.

What do you want to do with your career and why do you need to go to graduate school to accomplish this?

I spend more time talking people out of graduate school, or into a lesser commitment, than I spend convincing people to go to graduate school, because there is an inflated sense of the need and prestige of having a graduate degree. And, many people assume they need a degree, or the highest degree available, to get the job they want.

When I was in 6th grade, I decided I was going to be a veterinarian because I wanted to help animals, and I refused to consider other career paths which felt like a lesser calling. Three weeks into my undergraduate degree in animal science, I realized that the reality of being a veterinarian is very different from its portrayal, and it wasn’t what I wanted at all. I had only thought I wanted it because I had gotten a very limited exposure to career choices prior to going to college. I see the same mistake with people considering, or in, graduate school. I don’t mean to disparage having a veterinary or graduate degree, I just mean that the way they are portrayed to prospective students is not always accurate. Do your homework before committing to those career paths.

More than that, when you receive career advice or look into career paths, the advice tends to focus on the highlights or major types of jobs and ignore the nuance of interdisciplinary or support-level careers. Not only does this mean that everyone in animal science thinks they can only be a veterinarian or a professor to be in the field, but the way that careers are portrayed makes students think that the only suitable use of their time, and justification for massive financial burden of higher education they incur, is to go for the career with the highest prestige – whether they want that or not. Unfortunately, when students realize they don’t have the grades and the accolades to make it into the career with the most prestige, which also has the most strict entry requirements, it means students are more likely to give up entirely, consider leaving their degree unfinished, and feel guilt or shame for having failed. But here’s something no one tells you up front: choosing a different job doesn’t mean you failed to be the boss, it means you chose a different job. A veterinary technician isn’t a failed veterinarian, and a laboratory technician isn’t a failed researcher, they are performing different functions in a setting which requires collaboration from various job types.

So, I’ll ask you again, like I ask all prospective graduate students: what do you want do with your life, and do you need graduate school to get you there? This question helps you focus on creating stepwise objectives to meet your goals. Maybe you need a specific degree, or a degree in a specific field, or don’t actually need a degree at all, maybe you need an internship or professional training, and those might require a specific order to the events. Do you want to travel for work or not? Do you want to have clear definition of your job responsibilities, or the flexibility to determine your own to-do list? Do you want to be at the bench, in the field, or at the keyboard and to be doing the research, or do you want to be writing proposals and papers, and administrating the research and the lab personnel? And, do you actually want to work alone or are you alright in a social environment? Spoiler alert, most jobs in science actually require daily socialization, communication, and presentation.

All of these aspects will determine the particulars of what you need out of a graduate program and the type of degree you get. It’ll also help you in the future when you need to decide if you have met your grad school goal and are ready to move to the next phase of your life.

You can probably outline your personal goals and constraints, but defining your professional goals will take some homework. I’ve previously described the academic ladder, with descriptions of responsibilities of students, post-doctoral researchers, adjuncts and researchers, and tenure-track faculty. I have also compiled some “science journeys” into a video. Professional research blogs can be a good way to learn about life in academia, although keep in mind many labs only post about their successes and not about their failures. You can also connect with faculty on campus, and most labs will take on undergraduate (or even high school) students to participate in research. If you aren’t sure if you would be interested in research, you can ask to shadow researchers in the lab, attend a few lab meetings, or otherwise participate in a voluntary and commitment-free capacity. There are also plenty of research opportunities off campus, as well.

Volunteering for Adventurers and Conservationists for Science, collecting water samples to look for microplastics. Photo: Lee Warren.

Define your limits.

Graduate programs can be demanding, and you may need to relocate to find the topic, project, and mentor who is right for you. Before you start applying everywhere and racking up application fees, think about your constraints, your limits, and what would be a “deal-breaker” for you. Defining your limits (especially if you have a lot of them) will feel like you are writing yourself out of the possibility of finding a graduate program that works for you. In reality, it will help you find an institution that matches your life better and will help you focus on what is really important to you. You don’t have to erase all other aspects of your life in order to be a scientist.

Often, you feel pressured to give up everything to go to graduate school or other professional degree programs. The perception is that because there are fewer available positions than applicants that you need to underbid everyone else and give up everything, essentially that you need to recruit the graduate program. You assume you have to relocate and out of your own pocket, you need to put family on hold, you need give up job benefits, and you will have to work all the time.

I’ve moved over 7,000 miles for academic jobs.

Some of that may be true, and you should think about what you are able to manage and what you can’t live without. Some of that is just perception cast by work-a-holic culture and you will be able to reject or negotiate aspects. Think of your list of limits as conditions your employer might need to meet in order to convince you to take the position.

Narrow down your interests.

What do you want to do day after day, failure after failure?

If you start to make a list of things you are interested in science and you start writing down all the cool things you saw on social media – stop right there. Science is cool, but most of the time is cool in retrospect after the work has been completed and narrative added in. Science is arduous, iterative, and requires a lot of process improvement and reflection, and that takes time and focus. You need to be able to work on the same thing day after day and maintain interest even if everything you do seems to fail everyday. Especially when you are trying to develop technical skills and analytical skills, you need to be able to focus and dive deep into your topic, and you can’t be distracted by every little thing you think is cool, otherwise you will never get anything done.

You don’t need to commit to your research interest for life, and you don’t need to have an incredibly narrow scope to your interests, but you should be able to identify a common theme or the aspect that draws you in. Which topic makes you ask “yes, and?” over and over. What cool science story made you look for a second similar story, and then a third?

Search for a program.

There are a few different types of graduate degrees available, and each have nuances about the requirements to get in, requirements to graduate, cost to you, salary and benefits to you, and approach for application and acceptance into the program. I recommend looking into programs first, to find a location and institution that best meets your personal and professional goals and limits, and then trying to find a mentor. Don’t underestimate the importance of geographic location, and the environmental and social climate you will find there. You might need to be close to family, or find a location with a job or program for a partner. And if you are used to sun, several years of overcast winters might lose their novelty.

Most people apply to multiple programs and it can take time to find the right match. If you end up applying to multiple programs at a single institution, you can ask them to waive additional application fees, something that is commonly done but not commonly advertised.

Masters of Professional Studies are designed to give you familiarity with research and build skills. MPS is not thesis-based and requires research participation but not your own research project, so it is often used for people who will be in research-adjacent jobs. Students are admitted to programs based on their GPA, exam, or other numeric qualifications, and during their first semester have to identify a research mentor and two other committee members to guide their curricula and career development. MPS students pay for their own tuition, and most program/university policies stipulate that they are not allowed salary for their research, although they usually can be paid summer research salary. MPS students are eligible for teaching assistantships, but few, if any research assistantships. Because you are categorized as students and not employees, you do not receive health insurance or other fringe benefits, but you are eligible for student health insurance plans. MPS are completed in 2 years, but can be completed over longer periods of time to accommodate working professionals.

Master of Science programs are thesis-based, and require research study in a project you co-lead. Applications may be accepted year-round or according to deadlines, depending on the program. Master’s programs are designed to last 2 -3 years (credit hour requirements make it almost impossible to accomplish in fewer than two years), and beware mentors or projects which assign you a PhD-level amount of work to accomplish in just two years. Finding funding for master’s programs can be tricky, as many universities prioritize PhD students in order to boost their Carnegie research rating, but master’s programs are needed for training the majoring of the research workforce. Typically, you are paid a salary for your master’s, including partial coverage of your health insurance, and full coverage of your tuition. Most programs do not cover full health insurance, or semester fees, both of which can cost a thousand dollars of more in each of the spring and fall semesters, but you might be able to negotiate these to be paid by your advisor. You are considered both a student and an employee, but most university policies make graduate students ineligible for university-based or even individual-based pre-tax retirement savings programs for employees, although you can configure a post-tax retirement savings plan on your own.

Doctorate of Science programs are dissertation-based and requires that you (more or less) lead a research study and have contributed significantly to the theory behind its design, or theory behind its analysis and interpretation. PhD programs are designed to take about 5 years in the US (3 years in many other countries which don’t require coursework). Credit hour requirements make it almost impossible to accomplish in fewer than 4 years in the US, and PhD time can vary between 4 – 9 years, depending on the research and other circumstances. Applications are accepted year-round for direct-to-lab admissions (see below), and once or twice a year to be considered for lab-rotation-based fellowships.

Thesis-based science programs have two paths to admission, which is not always common knowledge. You will always have to apply to the graduate college of a university and meet the qualifications set by the university, as well as the program/department. After passing initial qualification checks, the graduate school will forward applications to the department to review, and it is this step that offers two paths.

If graduate programs have a collective fund to support students (teaching or research assistantships), they might accept a certain number of students as a cohort based on their qualifications. The top number of applicants will have some sort of recruitment event in which you are shown the facilities, have a chance to talk to students and faculty, and are interviewed by the program admission committee. Applicants who are admitted as a cohort have salary provided for the first 1 – 2 years as they take classes and rotate through different research labs. At the end of rotations, you match with a lab that has money to continue funding your salary and your research. Most programs will not accept so many students to the cohort that they will be unable to find them funding to continue their graduate work.

However, because thesis-based study is a funded position, you might apply to a department as a “direct admission”. This means that you have already matched with an advisor during prior conversations, the advisor has already looked through your application, and that the advisor and the department have informally agreed to offer you a position. But, this method is entirely dependent on that advisor having funding to pay your salary, tuition, and your research costs. You need to start the conversation with a possible mentor 6 months or more before you want to begin, unless you are applying to an advertised position in their lab. Finding research funding takes 6 – 18 months because of the slow pace of federal funding review and allocation, so if your advisor needs to find funding it will take planing ahead of time. Direct admission can happen on a rolling basis, but you will still need to apply to, and meet the qualifications of, the graduate college. Because of the unpredictable nature of the funding, you can defer a direct admission offer for a year, as needed.

Interviewing and searching for a mentor.

Whether you are applying as part of a cohort or a direct admission, you will have some sort of interview. It might be a series of informal conversations with potential advisors, or a formal interview with a program admission committee. When you are going into a graduate program interview, it feels daunting, and it’s not until you advance your career enough to be on the interviewer side that you realize it is supposed to be a conversation and not a test.

The graduate interview is not really about proving your qualifications because you have already met that hurdle with your application. The interview is to match students to mentors, and to confirm your interest in research. By having conversations and interacting in real time (whether in person or via electronic chat), interviewers can assess your communication skills, and get a better idea of your goals and interests.

The graduate advising relationship is quite different from what you might have experienced with previous instructors or undergraduate advisors, so it’s important that your personal and professional goals line up with those of your advisor. It really helps if you actually get along. You’ll be working together for several years during your degree, and will maintain a mentoring relationship for a good portion of your early career after you graduate. As a member of their lab, you’ll be performing a lot of their research and representing them at conferences and other venues during presentations, collaborations, or future work. It’s important to your career and theirs that you are able to work well together.

Therefore, during your grad school interviews you should remember that you are interviewing them, as well. The interview is an opportunity for your future advisor and institution to impress you and convince you to take a position with them. This is your chance to ask them about the projects you might be doing, where former lab members are now, their expectations of you, and more. Many federal funding proposals require a detailed mentoring plan, so advisors already have an idea what your professional development might look like. Importantly, get an idea about the lab culture. Some advisors feel you should work nights and weekends and during all breaks, others feel that your contributions belong to the lab and you might not have as much access to your own intellectual property than you think. And, not every lab has made a commitment to equity and inclusion. Here’s the policy for the Ishaq Lab.

It’s also a great time to ask grad program coordinators about university policy, departmental expectations, and financial support opportunities which might affect you. Does the program provide some or all financial support for health insurance, tuition, salary, and student fees? If not, what opportunities are in place to secure these? Are you able to switch mentors if there is a professional or personal mismatch? Is childcare available for graduate students? What about time off for maternity leave, and is this paid or unpaid? Family or medical leave? What if you need to take a semester or a year off, can you get back into the program and would you lose your funding? How many papers will you need to publish, or scientific presentations to give, and will there be financial support for those costly endeavors? While no one would ask you to pay publication fees out of pocket, I have heard of researchers refusing to financially support grad student travel to conferences, despite many departments requiring students to present in order to obtain their graduate degree. Travel to scientific conferences can run to several thousand in travel and participation costs per trip, and one trip to a national-level conference could cost an entire month’s graduate student salary.

Adopt healthy habits.

If everything comes together and you’ve been accepted into a graduate program that works for you, congratulations!! I wish you the best on the next step of your journey. If you are looking for more advice for once you get there, check out my previous posts, including preparing yourself before you start by adopting good habits for organization and work-life balance.