New perspective paper published on microbial transmission and lobsters.

A cookie in the shape of a lobster with icing to make it look like a pirate.

A collaborative perspective article was just published in Frontiers in Microbiology, which discusses epizootic shell disease in American lobsters, the role of microbes, and the movement of microbes in an aquatic environment. Because this is a perspective article, it is more of a thought exercise than my other publications, which either report findings or review other published literature, but it was intriguing to think about animal health in the context of rapidly-changing environmental conditions and microbial communities.

I previously presented some of the microbial community data related to the larger project from which this perspective piece came about, and this research team will continue to work on analyzing data from several experiments to develop into a research article later this year.

A steamed lobster on a plate.

This larger, collaborative project on lobster shell disease and warming ocean waters was begun by researchers at the Aquaculture Research Institute: Debbie Bouchard, Heather Hamlin, Jean MacRae, Scarlett Tudor, and later Sarah Turner as a grad student. I was invited to participate in the data analysis aspect two years ago.

At the time, Grace Lee was a rising senior at Bowdoin College, and accepted to my lab for the UMaine REU summer 2020 session, which was canceled. Instead, I hired Grace to perform DNA sequence analysis remotely, by independently learning data analysis following the teaching materials I had generated for my sequencing class.  I invited Joelle Kilchenmann to this piece after a series of conversations about microbes and social equity, because her graduate work in Joshua Stoll’s lab focuses on lobster fishing communities in Maine and understanding the challenges they face.


Ishaq, S.L., Turner, S.M., Tudor, M.S.,  MacRae, J.D., Hamlin, H., Kilchenmann, J., Lee1, G., Bouchard, D. 2022. Many questions remain unanswered about the role of microbial transmission in epizootic shell disease in American lobsters (Homarus americanus). Frontiers in Microbiology 13: 824950.

This was an invited contribution to a special collection: The Role of Dispersal and Transmission in Structuring Microbial Communities

Abstract: Despite decades of research on lobster species’ biology, ecology, and microbiology, there are still unresolved questions about the microbial communities which associate in or on lobsters under healthy or diseased states, microbial acquisition, as well as microbial transmission between lobsters and between lobsters and their environment. There is an untapped opportunity for metagenomics, metatranscriptomics, and metabolomics to be added to the existing wealth of knowledge to more precisely track disease transmission, etiology, and host-microbe dynamics. Moreover, we need to gain this knowledge of wild lobster microbiomes before climate change alters environmental and host-microbial communities more than it likely already has, throwing a socioeconomically critical industry into disarray. As with so many animal species, the effects of climate change often manifests as changes in movement, and in this perspective piece, we consider the movement of the American lobster (Homarus americanus), Atlantic ocean currents, and the microorganisms associated with either.

Ishaq Lab students present at the 2022 UMaine Student Research Symposium

This year, the UMaine Student Research Symposium was held in person and virtually, and undergrads and grads from the Ishaq Lab shared their research with the Maine community. You can check out the recorded presentations in the links below.

French*, R., Beale, J., Ishaq, S. Abstract 0402. Climate Change Affects Wild Mammal Ranges and Health; Will That Also Affect Infectious Disease Exposure Risk at Maine Farms? UMaine Student Symposium (virtual presentation). April 15, 2022.

Holcomb*, Coffman, J., Harrison, B., Tucker, K., Ishaq, S. Abstract 1080. An Overview of Three Biomedical Science Projects across Three Research Institutes. UMaine Student Symposium (virtual presentation). April 15, 2022.

Hosler*, S., Grey, E., Dankwa, A., Perry, J., Bowden, T., Beal, B., Ishaq, S. Abstract 0816. Initial descriptions of the microbes of farmed Atlantic sea scallop (Placopecten magellanicus) veligers and rearing tanks. UMaine Student Symposium (virtual presentation). April 15, 2022.

Pelletier*, E., Taylor, T., Ishaq, S. Abstract 830. Assessing the Veterinary Needs of Rural Maine and Implementing an Effective Management Plan. UMaine Student Symposium (poster presentation). April 15, 2022.

Presentations galore in 2022!

I have had the pleasure of sharing my work, both Ishaq lab led and collaborative, to many venues thus far in 2022, and I am grateful to the invitations I received even though I was not able to accept all of them. These have ranged from seminar series, to student groups, to scientific conferences. Some of these events have already passed, but several are forthcoming and available by registration.

  1. Ishaq* S. Microbes and Social Equity: what is it and how do we do it? Part of Track Hub: ‘Field Work & DEI Part 1: Fostering Equitable Partnerships with the Communities in Your Field Work Location’. American Society for Microbiology (ASM) Microbe 2022, Washington, DC (USA), June 9-13, 2022. (invited)
  2. Hosler2*, S., Grey, E., Dankwa, A., Perry, J., Bowden, T., Beal, B., Ishaq, S. Initial descriptions of  the microbes of farmed Atlantic sea scallop (Placopecten magellanicus) veligers and rearing tanks. American Society for Microbiology Microbe 2022 meeting. Washington, D.C.. June 9-13, 2022.
  3. Hosler2*, S., Grey, E., Ishaq, S. Comparing the microbiome of wild and farmed Atlantic sea scallop (Placopecten magellanicus) veligers. Northeast Aquaculture Conference & Exposition (NACE) and the 41st Milford Aquaculture Seminar (MAS). Portland, Maine. POSTPONED to April 27-28, 2022
  4. Ishaq*, S., Li, Y., Holman2, J., Zhang, T., Chen, G. “Biogeography may be key to microbial anti inflammatory production using dietary precursors.” Maine Biological and Medical Sciences Symposium, Bar Harbor, ME, April 22-23, 2022. (invited)
  5. Holcomb2*, L., Coffman, J., Harrison, B., Tucker, K., Ishaq, S.L. Abstract 1080. An Overview of Three Biomedical Science Projects across Three Research Institutes. UMaine Student Research Symposium (virtual). Apr 15, 2022.
  6. Pelletier1*, M., Taylor, T., Ishaq, S. Abstract 830. Assessing the Veterinary Needs of Rural Maine and Implementing an Effective Management Plan. UMaine Student Research Symposium (virtual). Apr 15, 2022
  7. French1*, R., and Ishaq, S. Abstract 402. Climate Change Affects Wild Mammal Ranges and Health; Will That Also Affect Infectious Disease Exposure Risk at Maine Farms? UMaine Student Research Symposium (virtual). Apr 15, 2022.
  8. Ishaq, S. “Microbes at the nexus of environmental, biological, and social research.” Iowa State University Spring Microbiology Graduate Student Organization retreat. (virtual). April 14, 2022 (invited co-plenary).
    1. see poster below
  9. Ishaq*, S., Li, Y., Holman2, J., Zhang, T., Mawe, G., Hurd, M., Lavoie, B. Baudewyns1, D., Colucci1, L., Balkan1, J., Chen, G, Moses, P. “Biogeography may be key to microbial anti inflammatory production using dietary precursors.”  Congress of Gastrointestinal Function (CGIF), April 11 – 13, 2022.
  10. “My science journey”, invited presentation and discussion of my career path to undergraduate women in STEM, UMaine WiSTEMM group, March 28, 2021
  11. Ishaq, S. “Moose rumen microbes and you.” The Wildlife Society Nutritional Ecology Working Group Webinar series, (virtual), March 9, 2022.
  12. Ishaq*, S., Li, Y., Holman2, J., Zhang, T., Mawe, G., Hurd, M., Lavoie, B. Baudewyns1, D., Colucci1, L., Balkan1, J., Chen, G, Moses, P. “Biogeography may be key to microbial anti inflammatory production using dietary precursors.”  Dartmouth Molecular Microbiology and Pathogenesis (M2P2), February 24 – 25, 2022. (invited)
    • 120 students and faculty researchers.
  13. Ishaq, S. “Microbes at the nexus of environmental, biological, and social research” The Microbes and Social Equity 2022 speaker series, virtual, University of Maine and the Microbes and Social Equity working group. January 19, 2022.
    1. 67 participants, 131 registrants, faculty, students, public
  14. Ishaq, S. ​”Microbes at the nexus of environmental, biological, and social research.” 2nd Rhode Island Microbiome Symposium, virtual, University of Rhode Island Kingston, RI, January 14, 2022. (invited plenary)
    • 50 participants, researchers and graduate students
  15. Booker, Y., Ishaq, S., Levesque*, D.L. “The role of the microbiome in responses to heat stress in endotherms.” The Society of Integrative and Comparative Biology (SICB) annual meeting. Phoenix, AZ. January 3-7, 2022.

Note: an asterisk denotes the speaker if multiple authors contributed, 1 after a name denotes undergrad in the Ishaq lab, 2 after a name denotes grad in the Ishaq Lab.

Microbes and Social Equity journal collection up to 6 published contributions!

The Microbes and Social Equity working group has been working with the scientific journal mSystems for the past year to develop a special collection of articles which highlight the connections between microbiomes, microbial exposures, social structures, and political contexts, as well as ways in which social, political, or economic changes could improve the way we interact with microbes to induce positive effects on our health and our planet.

The sixth contribution has just been published, and we have a handful more currently in the peer-review process! We plan to collect 25 invited contributions by the end of this year. You can check out the entire collection as it grows using the link below.

For more real-time discussions about microbes and social equity, check out our speaker series which is currently running until May 4th. You can also check out recordings from past talks.

mSystems Special Series: Social Equity and Disparities in Microbial Exposure

New publication on rumen microbes which may have uses in biofuel production

A scientific article led by my colleague Dr. Alaa Rabee at the Desert Research Center in Egypt was just published online and is now available! Dr. Rabee and I have been collaborating remotely on projects related to the bacteria in the rumen of camels, sheep, and cows, as Dr. Rabee’s work focuses on the isolation of bacteria which can degrade plant materials efficiently and could be used to produce biofuels. He will be spending 6 months working in my lab as a visiting scholar, which was delayed until this year because of the pandemic.


Rabee, A.E., Sayed Alahl, A.A., Lamara, M., Ishaq, S.L. 2022. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLoS ONE 17(1): e0262304. Article.

Abstract

Lignocellulosic biomass such as barley straw is a renewable and sustainable alternative to traditional feeds and could be used as bioenergy sources; however, low hydrolysis rate reduces the fermentation efficiency. Understanding the degradation and colonization of barley straw by rumen bacteria is the key step to improve the utilization of barley straw in animal feeding or biofuel production. This study evaluated the hydrolysis of barley straw as a result of the inoculation by rumen fluid of camel and sheep. Ground barley straw was incubated anaerobically with rumen inocula from three fistulated camels (FC) and three fistulated sheep (FR) for a period of 72 h. The source of rumen inoculum did not affect the disappearance of dry matter (DMD), neutral detergent fiber (NDFD). Group FR showed higher production of glucose, xylose, and gas; while higher ethanol production was associated with cellulosic hydrolysates obtained from FC group. The diversity and structure of bacterial communities attached to barley straw was investigated by Illumina Mi-Seq sequencing of V4-V5 region of 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes and Bacteroidetes. The dominant genera were RC9_gut_group, RuminococcusSaccharofermentansButyrivibrioSucciniclasticumSelenomonas, and Streptococcus, indicating the important role of these genera in lignocellulose fermentation in the rumen. Group FR showed higher RC9_gut_group and group FC revealed higher RuminococcusSaccharofermentans, and Butyrivibrio. Higher enzymes activities (cellulase and xylanase) were associated with group FC. Thus, bacterial communities in camel and sheep have a great potential to improve the utilization lignocellulosic material in animal feeding and the production of biofuel and enzymes.

MSE paper published on “Twenty important research questions in microbial exposure and social equity”

The Microbes and Social Equity working group has published its second collaborative paper together, led by Dr. Jake Robinson and featuring 25 other MSE group researchers in various fields related to microbiomes, social equity, and ecosystems. In developing this paper, we had many conversations about what had been accomplished in research related to microbial exposure, as well as what had yet to be done. We provide some background information as context, and spend the majority of the paper outlining twenty of the most poignant research directions. There are so many questions yet to be answered about the way the microbial communities interact with human lives, and how our lives impact them back. In our enthusiasm for the topics, we could have endlessly chatted about research, such that we decided to limit ourselves to twenty questions. We hope that this piece becomes a source for inspiration for others who continue this conversation and future research in these areas.

You can find a link below to read the full article, and links to the authors’ twitter feeds if you’d like to check them out on social media. You’ll be able to hear more about this publication in an upcoming seminar from Jake, as part of the 2022 MSE speaker series, which is open to all and free to attend over zoom.


Robinson, J.M., Redvers, N., Camargo, A., Bosch, C.A., Breed, M.F., Brenner, L.A., Carney, M.A., Chauhan, A., Dasari, M., Dietz, L.G., Friedman, M., Grieneisen, L., Hoisington, A.J., Horve, P.F., Hunter, A., Jech, S., Jorgensen, A., Lowry, C.A., Man, I., Mhuireach, G., Navarro-Pérez, E., Ritchie, E.G., Stewart, J.D., Watkins, H., Weinstein, P., and Ishaq, S.L. 2022. Twenty important research questions in microbial exposure and social equity. mSystems 7(1): e01240-21. Special Series: Social Equity as a Means of Resolving Disparities in Microbial Exposure

ABSTRACT

Social and political policy, human activities, and environmental change affect the ways in which microbial communities assemble and interact with people. These factors determine how different social groups are exposed to beneficial and/or harmful microorganisms, meaning microbial exposure has an important socioecological justice context. Therefore, greater consideration of microbial exposure and social equity in research, planning, and policy is imperative. Here, we identify 20 research questions considered fundamentally important to promoting equitable exposure to beneficial microorganisms, along with safeguarding resilient societies and ecosystems. The 20 research questions we identified span seven broad themes, including the following: (i) sociocultural interactions; (ii) Indigenous community health and well-being; (iii) humans, urban ecosystems, and environmental processes; (iv) human psychology and mental health; (v) microbiomes and infectious diseases; (vi) human health and food security; and (vii) microbiome-related planning, policy, and outreach. Our goal was to summarize this growing field and to stimulate impactful research avenues while providing focus for funders and policymakers.

iScience Backstory on our collaborative work on ants, nematodes, and bacterial transfer

Over the summer, an article was published which featured a handful of researchers from across the US and research spanning a decade on the bacterial communities associated with invasive ants and nematodes in Maine. At the time, we were invited to also contribute a “Backstory” article to the scientific journal iScience which described the journey and the ideas.

That story authored by myself and Ellie Groden (senior researcher on the journal article) has just been published, and can be found here. I’d like to thank Dr. Sheba Agarwal, who was the editor on the paper, helped us develop our Backstory, and also spoke to me about this and other work as a guest on the WeTalkScience podcast.

The Microbes and Social Equity working group is turning 2!

It doesn’t seem that long ago that we were just an assorted group of interested researchers having a chat, but here we are two years later gaining international support and interest.  We greatly appreciate your interest in this group, and are pleased to share some of our recent updates.

We currently have 115 members of the Microbes and Social Equity working group, and another 33 people signed up just for the newsletter. In 2021, we ran a very successful speaker series, virtual symposium, and collectively had quite a few publications, presentations, and developments! We are excited to continue that momentum in 2022, and are planning another speaker series and virtual symposium, finalizing our journal special collection with mSystems, and furthering the collaborative projects we have begun. We will also be adding additional leadership roles for the group, to better accommodate our group and give more attention to our growing activities and initiatives.

Publications


mSystems Special Collections:

We are making great progress adding to our special collection with mSystem, with 3 papers published and several more currently in review! We will continue adding contributions through 2022. 

  1. Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice | mSystems 
  2. Teaching with Microbes: Lessons from Fermentation during a Pandemic | mSystems
  3. Variation in Microbial Exposure at the Human-Animal Interface and the Implications for Microbiome-Mediated Health Outcome | mSystems  


Upcoming

  • Francisco Parada’s postdoc, Dr. Ismael Palacios-García finished collecting his probiotic/lifestyle randomized trial, collecting cognitive electrophysiology (EEG+EGG), microbial (DNA from fecal samples), and phenomenological data (questionnaires) over 4+ months. They hope they will be publishing some of these results soon!  
  • Jake Robinson is working on “Invisible Friends”, a popular science book anticipated for release in 2022. From Jake’s page: “Invisible Friends is about our extraordinary relationship with microbes, and how they shape our lives, our health, and the world around us. The book aims to challenge the prevailing negative perception of microorganisms, by highlighting the weird, wonderful, and indispensable roles they play in our health, behaviour, society, and ecosystems!”

Presentations

Upcoming: 

The Microbes and Social Equity speaker series 2022 is under development! We hope to invite speakers for a virtual series running January through April, Wednesdays from 12:00 – 13:00 EST. Registration is required but the series is free to attend.

inVIVO Planetary Health, virtual conference, Dec 1-7, 2021. Register here. Several MSE group members will be giving talks there, such as:

  • Sue Ishaq, “Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice”
  • Ari Kozik, “The human microbiome and health disparities: restoring dysbiosis as a matter of social justice”
  • Jake Robinson, “Microbiome-inspired green infrastructure (MIGI): a bioscience roadmap for urban ecosystem health”

2nd Rhode Island Microbiome Symposium, in person conference, University of Rhode Island Kingston, RI, January 14, 2022. Register here.

  • Sue Ishaq, ​”Microbes at the nexus of environmental, biological, and social research”

American Society for Microbiology (ASM) Microbe 2022, in person conference, Washington, DC (USA), June 9-13, 2022.

  • ‘Field Work & DEI Part 1: Fostering Equitable Partnerships with the Communities in Your Field Work Location’. The session’s date is June 11, 2022 (11:45AM – 12:30PM).
    • Ishaq,”Microbes and Social Equity: what is it and how do we do it?”
  • MSE special session, “Microbes and Social Equity: the Microbial Components of Social, Environmental, and Health Justice”. The session’s date is June 11, 2022 (1:45PM – 3:45PM), and the event is under development.
    • Featuring panelists Monica Trujillo, Ari Kozik, and Carla Bonilla

Past

Mike Friedman hosted a very successful MSE Special Session (together with the Microbial Ecology section) at this year’s virtual Ecological Society of America meeting. Naupaka Zimmerman, Justin Stewart, Monica Trujillo and Sue Ishaq gave short presentations on social justice and various aspects of environmental and human microbiota. But the bulk of the session was taken up by audience discussion of issues in environmental justice and microbes, practical and suggested policies and education.

First first-authorship paper accepted for Olivia Choi from the Kamath Lab!

Olivia Choi, a doctoral candidate in the Kamath lab at the University of Maine, has had her first scientific paper accepted for which she is the first author – a position indicative of the amount of work and organization that she put into developing this work and wrangling the large research team involved. Olivia’s graduate work is winding down as she concentrates on writing up papers and her dissertation, and she is planning on defending her PhD and looking for a postdoc in 2022 in wild animal microbiomes and ecology.

Olivia brought this 16S rRNA dataset to use in my AVS590 data analysis class back in spring 2020, of bacterial communities in different locations on birds of different species, which had been sampled as part of her dissertation work on bird migration and range changes, microbial carriage, and risk of transmission of microbes to other animals. I mentored her through analysis and preliminary manuscript writing as part of that course. The research team generously invited me to join the author team, and I continued to provide mentorship as Olivia worked through the complex task of melding various types of microbiology data.


Choi, O., Corl, A., Lublin, A., Ishaq, S.L., Charter, M., Pekarsky, S., Thie, N., Tsalyuk, M., Turmejan, S., Wolfenden, A., Bowie, R.C.K., Nathan, R., Getz, W.M., Kamath, P.L. 2021. High-throughput sequencing for examining Salmonella prevalence and pathogen – microbiota relationships in barn swallows. Frontiers in Ecology and Evolution 9:681.

Abstract:

Studies in both humans and model organisms suggest that the microbiome may play a significant role in host health, including digestion and immune function. Microbiota can offer protection from exogenous pathogens through colonization resistance, but microbial dysbiosis in the gastrointestinal tract can decrease resistance and is associated with pathogenesis. Little is known about the effects of potential pathogens, such as Salmonella, on the microbiome in wildlife, which are known to play an important role in disease transmission. Recent studies have expanded the traditional use of 16S rRNA gene amplicon data from high-level characterization of host-associated microbial communities (i.e., the microbiome) to detection of specific bacteria. Few studies, however, have evaluated the ability of high-throughput 16S rRNA gene sequencing data to detect potential bacterial pathogens in comparison with laboratory culture-based methods. To address this knowledge gap, we evaluated the utility of 16S rRNA gene sequencing for potential pathogen detection and explored the relationship between potential pathogens and microbiota. First, we compared the detection of Salmonella spp. in barn swallows (Hirundo rustica) using 16S rRNA data with standard culture techniques. Second, we examined the prevalence of Salmonella using 16S rRNA data and examined the relationship between Salmonella presence or absence and individual host factors. Lastly, we evaluated host-associated bacterial diversity and community composition in Salmonella present versus absent birds. Out of 108 samples, we detected Salmonella in 6 (5.6%), 25 (23.1%), and 3 (2.8%) samples based on culture, unrarefied 16S rRNA gene sequencing data, and both techniques, respectively. In addition, we found that Salmonella presence and absence differed between birds based on migratory status and weight and that bacterial community composition and diversity differed between Salmonella present versus absent birds, with eleven bacterial taxa differentially abundant between the two groups. The results of this study highlight the value of high-throughput 16S rRNA gene sequencing data for bacterial pathogen detection and for examining relationships between potential pathogens and host-associated microbial communities. Further, this study emphasizes an approach using 16S rRNA gene sequencing data for simultaneously monitoring multiple pathogens in wild avian reservoirs, which is important for prediction and mitigation of disease spillover into livestock and humans. 

This work was presented at a recent scientific conference:

Choi*, O.N., Corl, A., Wolfenden, A., Lublin, A., Ishaq, S.L., Turjeman, S., Getz, W.M., Nathan, R., Bowie, R.C.K., Kamath, P.L. “High-throughput sequencing for examining Salmonella prevalence and pathogen -microbiota relationships in barn swallows.”  69th Annual – 14th Biennial Joint Conference of the Wildlife Disease Association & European Wildlife Disease Association. (virtual). Aug 31 – Sept 2, 2021.

Student point of view on researching microbes, flying squirrels, and mice around farms in Maine

Five women taking a photo together at a farm.  They are standing a few feet apart from each other, and standing in front of a cow feedlot with two cows eating.

This summer, a collaborative project was launched by the Ishaq Lab, Danielle Levesque, and Pauline Kamath at UMaine Orono and Jason Johnston at UMaine Presque Isle; “Climate Change Effects on Wild Mammal Ranges and Infectious Disease Exposure Risk at Maine Farms.”

Funded by the University of Maine Rural Health and Wellbeing Grand Challenge Grant Program, this project assesses pathogen carriage by mice and flying squirrels on or near farms in several locations in Maine. We live-capture mice and flying squirrels in traps, collect the poop they’ve left in the trap, and conduct a few other health screening tests in the field before releasing them. To maximize the information we collect while minimizing stress and interference to the animals, information is being collected for other projects in the Levesque Lab at the same time. We will be collecting samples for another few weeks, and then working on the samples we collected in the lab over the fall and winter.

One of the major goals of the funding program, and this project, is to engage students in research. After a few months on the project, some of our students describe their role and their experiences so far…


A close-up of a deer mouse sitting in a live capture trap in the forest.  In the background is one of the researchers kneeling on the ground.

Marissa Edwards

Undergraduate in Biology

Levesque Lab

Hi! My name is Marissa Edwards and I am an undergraduate research assistant with Danielle Levesque. This summer, my role has been to set traps, handle small mammals, and collect fecal and tissue samples from deer mice.

A pine marten sitting in a live capture trap in a forest.

One of the skills I’ve learned this summer is how to properly ear tag a mouse. To catch mice, we set traps across UMaine’s campus as well as other parts of Maine, including Moosehead Lake, Flagstaff Lake, and Presque Isle.

During our trip to Moosehead Lake, I saw a marten for the first time (it was in one of our traps). I did not know martens existed and initially thought it was a fisher cat. It was both a cool and terrifying experience!


Northern flying squirrel sitting on a net with a forest in the background.

Elise Gudde

Master’s Student of Ecology and Environmental Sciences

Levesque Lab

Hello, my name is Elise Gudde, and I am currently a master’s student at the University of Maine in the Ecology and Environmental Sciences program. I work in Dr. Danielle Levesque’s lab studying small mammal physiology in Maine.

Northern flying squirrel sitting on a net with a forest in the background.

This summer, as a part of the squirrel project, I work to trap small mammal species in Maine, such as white footed mice, deer mice, and flying squirrels in order to determine which species have shifted their range distributions as a result of climate change. Being a part of the research team, this summer has brought me all over Maine! I have been able to travel to Orono, Greenville, New Portland, and Aroostook County to study many interesting mammals. I even got to handle an Eastern chipmunk for the first time! As a member of the animal-handling side of the research team, I also collect fecal and tissue samples from the animals. These samples are then handed off for other members of the team to research in the lab!


Rebecca French wearing a white laboratory coat, a fabric face mask, and beige latex gloves while using a yellow plastic loop tool to spread bactrial cultures on fresh agar media plates to look for growth.  Rebecca is sitting at a biosafety cabinet with the glass window slide down between her and what she is working on.  Assorted scientific materials can be seen in the background.

Rebecca French

Undergraduate in Animal and Veterinary Sciences

Ishaq Lab

In the beginning of this project, I had no idea what I was getting myself into when I began researching flying squirrels and mice. I came into it with almost no in-person lab experience, so I had a lot to learn.

So far, I have been focusing on making media on petri dishes for culturing bacterial growth and after plating fecal bacteria on said plates; discerning what that growth can be identified as.

We are using media with specific nutrients, and colored dyes, and certain bacteria we are interested in will be able to survive or produce a color change. I have also been performing fecal flotations and viewing possible eggs and parasites under a microscope. What I’ve found most fun about this project is putting into practice what I have learned only in a classroom setting thus far. It is also very satisfying to be a part of every step of the project; from catching mice, to making media, to using that media to yield results and then to be able to have a large cache of information to turn it all into a full fledged project.


Joe Beale, posing for a photo in an open office space.

Joe Beale

Undergraduate in Animal and Veterinary Sciences

Kamath Lab

Hello! My name is Joseph Beale, and I am an undergraduate at the University of Maine working on the squirrel project as a part of my capstone requirement for graduation. My primary responsibility in this project is the molecular testing of samples obtained from the field. Primarily I will be working with ear punch samples taken from flying squirrels and field mice. DNA extracts from these field samples will be run via qPCR. The results of this qPCR will tell us if these squirrels are carrying any pathogens. 

The pathogens we will be testing for are those found in Ixodes ticks. The qPCR panel which we will be running the extracted DNA from the ear punches on tests for Borrelia burgdorferi, the causative agent of Lyme disease, Anaplasma phagocytophilum, the causative agent of anaplasmosis, and Babesia microti, the causative agent of Babesiosis. These pathogens and respective diseases discussed are all transmitted through Ixodes ticks. Deer ticks are the most common and famous of the Ixodes genus. The Ixodes genus encapsulates hard-bodied ticks. Along with deer ticks, Ixodes ticks found in Maine include: woodchuck ticks, squirrel ticks, mouse ticks, seabird ticks, and more. Mice and squirrel are ideal hosts for these Ixodes ticks, therefore becoming prime reservoirs for these diseases. In our research, we are interested in determining the prevalence of these diseases in squirrels and mice as these hosts can spread these diseases to humans and other animals in high tick areas. 

qPCR, quantitative polymerase chain reaction, allows for the quantification of amplified DNA in samples.  This will help tell us if these pathogens are present in samples and in what capacity. In qPCR provided DNA strands are added to the reaction. These strands match with the genome of the intended pathogens. If the pathogens are present in our samples, the provided DNA strands will bind to the present pathogen DNA. PCR will then work to manufacture billions of copies of this present pathogen DNA. 

When not working on this project, I also work in the University of Maine Cooperative Extension Diagnostic Research Laboratory as a part of the Tick Lab. In this position I have honed the molecular biology skills that I will in turn use for the squirrel project. 


Yvonne Booker

Undergraduate, Tuskeegee University

Levesque Lab

Microbes and the Mammalian Mystery“, reblogged from the University of Maine REU program.

Hello everyone! My name is Yvonne Booker and I am a rising senior, animal and poultry science major at Tuskegee University in Tuskegee, Alabama. I am interested in animal health research, with a particular focus in veterinary medicine. I’ve always wanted to be a veterinarian, but as I progressed throughout  college, I became interested in learning more about animal health and how I might help animals on a much larger and impactful scale–which led me to the REU ANEW program. Currently climate change is causing an increase in global temperatures, putting pressure on animals’ ability to interact and survive within their environment. Consequently, scientists are now attempting to understand not just how to prevent climate change, but how these creatures are adapting to this emerging challenge.

My research experience this summer is geared toward addressing this global issue. I am currently working in Dr. Danielle Levesque’s Lab, which aims to study the evolutionary and ecological physiology of mammals in relation to climate. My project involves conducting a literature review of the microbiome of mammals, to learn more about how their microbial community plays a role in how they adapt in a heat-stressed environment.

Our knowledge of vertebrate-microbe interactions derives partly from research on ectotherms. While this research paves the path for a better understanding of how organisms react to temperature changes, fewer studies have focused on how mammals deal with these extreme temperature shifts—specifically, the abrupt surge in climate change. The ability of endotherms to  thermoregulate alters our knowledge of (1) how mammals create heat tolerance against these environmental challenges and (2) how this internal process alters mammals’ adaptability and physiology over time. We suggest that the microbiome plays an essential part in understanding mammals’ heat tolerance and that this microbial community can help researchers further understand the various processes that allow mammals to survive extreme temperatures.

As a student of the REU ANEW program my goal was to go out of my comfort zone and study animals in an applied fashion that would impact animal health on an environmental and ecological scale; and this program was just that! My mentor, Dr. Levesque was wonderful in guiding me through conducting this research, while giving me the independence to create my own voice. The program directors, Dr. Anne Lichtenwalner and Dr. Kristina Cammen, have also  been extremely supportive throughout this entire program equipping students with the tools they need to succeed as researchers. Although research was my primary focus this summer, some of my favorite memories involved building community with the students and the staff. From weekly check-ins on zoom to virtual game nights of complete smiles and laughter, this program has been one for the books! The One Health and the Environment approach to this Research Experience for Undergraduate students has encouraged me to build on my curiosity within the field of science, and I’m looking forward to applying what I’ve learned to my career in the future.