A collaborative project on juniper diets in lambs was published!

In 2015, while working in the Yeoman Lab, I was invited to perform the sequence analysis on some samples from a previously-run diet study.  The study was part of ongoing research by Dr. Travis Whitney at Texas A & M on the use of juniper as a feed additive for sheep.  The three main juniper species in Texas can pose a problem- while they are native, they have significantly increased the number of acres they occupy due to changes in climate, water availability, and human-related land use.  And, juniper can out-compete other rangeland species, which can make forage less palatable, less nutritious, or unhealthy for livestock.  Juniper contains essential oils and compounds which can affect some microorganisms living in their gut.  We wanted to know how the bacterial community in the rumen might restructure while on different concentrations of juniper and urea.

Coupled with the animal health and physiology aspect led by Travis, we published two companion papers in the Journal of Animal Science.  We had also previously presented these results at the Joint Annual Meeting of the American Society for Animal Science, the American Dairy Science Association, and the Canadian Society for Animal Science in Salt Lake City, UT in 2016.  Travis’ presentation can be found here, and mine can be found here.  The article can be found here.


Ground redberry juniper and urea in supplements fed to Rambouillet ewe lambs.

Part 1: Growth, blood serum and fecal characteristics, T.R. Whitney

Part 2: Ewe lamb rumen microbial communities, S. L. Ishaq, C. J. Yeoman, and T. R. Whitney

This study evaluated effects of ground redberry juniper (Juniperus pinchotii) and urea in dried distillers grains with solubles-based supplements fed to Rambouillet ewe lambs (n = 48) on rumen physiological parameters and bacterial diversity. In a randomized study (40 d), individually-penned lambs were fed ad libitum ground sorghum-sudangrass hay and of 1 of 8 supplements (6 lambs/treatment; 533 g/d; as-fed basis) in a 4 × 2 factorial design with 4 concentrations of ground juniper (15%, 30%, 45%, or 60% of DM) and 2 levels of urea (1% or 3% of DM). Increasing juniper resulted in minor changes in microbial β-diversity (PERMANOVA, pseudo F = 1.33, P = 0.04); however, concentrations of urea did not show detectable broad-scale differences at phylum, family, or genus levels according to ANOSIM (P> 0.05), AMOVA (P > 0.10), and PERMANOVA (P > 0.05). Linear discriminant analysis indicated some genera were specific to certain dietary treatments (P < 0.05), though none of these genera were present in high abundance; high concentrations of juniper were associated with Moraxella and Streptococcus, low concentrations of urea were associated with Fretibacterium, and high concentrations of urea were associated with Oribacterium and PyramidobacterPrevotella were decreased by juniper and urea. RuminococcusButyrivibrio, and Succiniclasticum increased with juniper and were positively correlated (Spearman’s, P < 0.05) with each other but not to rumen factors, suggesting a symbiotic interaction. Overall, there was not a juniper × urea interaction for total VFA, VFA by concentration or percent total, pH, or ammonia (P > 0.29). When considering only percent inclusion of juniper, ruminal pH and proportion of acetic acid linearly increased (P < 0.001) and percentage of butyric acid linearly decreased (P = 0.009). Lamb ADG and G:F were positively correlated with Prevotella(Spearman’s, P < 0.05) and negatively correlated with Synergistaceae, the BS5 group, and Lentisphaerae. Firmicutes were negatively correlated with serum urea nitrogen, ammonia, total VFA, total acetate, and total propionate. Overall, modest differences in bacterial diversity among treatments occurred in the abundance or evenness of several OTUs, but there was not a significant difference in OTU richness. As diversity was largely unchanged, the reduction in ADG and lower-end BW was likely due to reduced DMI rather than a reduction in microbial fermentative ability.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s