It’s been a really busy spring so far, so much so that I haven’t had much chance to write about it! Here is a brief overview of what I’ve been up to.
Research
This past year has easily produced the largest number of research topics I have been working on concurrently. In addition to publishing a paper on the rumen in cattle last September, I have been working on a paper on the rumen of yearling rams which is currently in preparation and due to be submitted to a scientific journal for review soon. I still have several small projects in development from my post-doc in the Yeoman lab, as well as a number of grad-student-led papers that are still pending, and was invited to contribute to a scientific review which is also in preparation.
I’ve been working through the large dataset of soil samples from my post-doc in the Menalled lab. That large project has blossomed into four papers thus far, two of which I’m writing on the soil bacteria, and one of which I am co-authoring on the legacy effects of climate change. Those four are also due for submission to scientific journals for review soon. The Menalled lab just received a grant award from USDA AFRI NIFA, on which I am a (subaward) PI and to which I will be contributing soil bacterial community analysis.
The rumen and soil work over the past year has been entirely in my spare time, however, as my position in the Biology and the Built Environment Center has kept me delightful busy. I have been collaboratively processing a large and complex dataset on weatherization, home operation and lifestyle, indoor air quality, and microorganisms in dust, which I will be presenting at two (possibly three) conferences this summer. I have also been collaboratively writing grant proposals, and while those are still in development or pending review, they span everything from light, to chemistry, to plants and living machines, to hospitals, to social networks in buildings. I hope to further develop some of these collaborations with a short trip at the end of June to the University of Austin, Texas’ Test House.
In addition, I have been assisting in the planning, development, and launch of the University of Oregon’s Institute for Health in the Built Environment. The Institute will facilitate collaboration and information sharing between researchers and industry professionals, with the goal of researching, building, and promoting healthier built environments. The Institute just hosted its #BuildHealth2018 Consortium meeting in Portland, OR, at which I presented some of the results from that large weatherization study regarding indoor plants. The meeting was fantastic, and spurred in-depth discussion on problems facing industry professionals, innovative research goals, and a wealth of new possibilities.
Outreach
In the past few months, I’ve spent a lot of my spare time helping to develop the Eugene Pod of 500 Women Scientists, an organization created to promote diversity, equity, and inclusion in science, and to promote education and interactive between scientists and the general public. We have focused on hosting monthly Science Salon events, four to date, to do just that. I presented at the first one, and have helped organize and MC the others. The Eugene Pod’s activities were just featured on the central 500 WS page, as Pod of the Week, and you can also follow our updates and events on our Facebook page.
Running trivia on fire and fungi.
While it has been a struggle to maintain regular contributions, I still maintain Give Me the Short Version, along with a few intrepid contributors, which summarizes scientific articles for easier consumption. This spring, I spent several days judging STEM and robotics competitions for several local Eugene middle and high schools, which has been a lot of fun. The student projects are enthusiastic and creative, and I appreciate the chance to assist in these programs in some small way.
Today I'm judging a middle school #Robotics competition, for their #STEM research award. I'm so excited to see what these kids created! #sciencesaturday
I have continued to mentor UO students. The post-bac student from the BioBE lab that was learning bioinformatics with me, Mitch Rezzonico, was accepted to the University of Oregon’s Bioinformatics and Genomics Master’s Program! Mitch wrapped up his work this spring to prepare for the intensive program, and with his interest in health research, BioBE hopes to work with him again in the future. BioBE recently hired an undergraduate student for science communication, Mira Zimmerman. Mira has been making some upgrades to the BioBE and ESBL websites which will continue to be rolled out over the next few months. In addition, she will be helping me develop informative blog posts on the built environment, and helping to grow our information dissemination capabilities. Hiring a student as a science communicator was something I had been hoping to test out, and so far it’s been a smashing success.
Teaching
My course proposal for “Introduction to Mammalian Microbiomes” was accepted by the University of Oregon Clark Honor’s College for the fall term!
In April, I gave a guest lecture to Mark Fretz’s Design the Unseen course at the University of Oregon, on the Indoor Microbiome. The class was populated by architecture students, who were learning about integrating health considerations into design strategies. As a final project, students design a brief field experiment or intervention strategy for a design assistance project with Portland firms. I assisted one group in designing a small experiment on natural daylighting in an office and the effect on E. coli growth on culture plates – more on those results soon!
Later that same day, I have a lecture at the Oregon Museum of Science and Industry in Portland, as part of their OMSI After Dark series which opens the museum after-hours to adults for hands-on activities and lectures. The lecture was on the gut microbiome, and I was able to present in the Planetarium!
As we rapidly approach the end of both the fall semester and 2017, it’s a great time to reflect about the year’s accomplishments (update your C.V.) and look forward to what 2018 will bring (panic about all the things you haven’t finished yet that need to be completed by the end of the year).
Time management is a reoccurring theme in academia, and with so many items on one’s to-do list, it’s not hard to see why. Everyone has their own advice about how to be more effective; which was the very first meeting in this year’s Faculty Organizing for Success professional development workshop series, which I attended in October. I compiled some of the suggestions made there, along with advice I’ve picked up over the years, and strategies I use which I’ve found to be effective.
One of the major questions that came up at the FOS meeting was time management in the face of academic duties, namely service. Academics have a requirement to provide service or outreach to their university, the community, and their field, and as I’ve previously discussed, these amorphous responsibilities can be time-consuming and under-appreciated. Sometimes, turning off your ringer, closing your email application, or saying “no” isn’t enough or isn’t possible. So, how can you make the most of your time while navigating the constraints of a fractured schedule?
Lists
I find lists to be extremely helpful in keeping track of everything I need to do, and it really helps me focus on what I need to get done TODAY.
Lists help me organize my thoughts
by adding notes for each particular item
and ordering the steps I need to take to finish each item.
Being able to cross tasks off a physical list is also a great visual reminder that you are, in fact, being productive.
And, at the end of the day, the remaining items form a new list, so I know where to begin tomorrow. This saves me a lot of time which would otherwise be spent trying to remember where and how I left off.
Calendars
Don’t like lists? I also heavily rely on my calendar and will schedule appointments for everything, especially the little things that I’m liable to forget, including catching up on emails, lunch, reading articles, writing posts, etc. I utilize color-coding and multiple calendars within a calendar, like shared calendars from research labs or online applications. I have learned to schedule small blocks of time after meetings, especially project development or brainstorming meetings, during which I can write notes, look up deadlines, send emails, or any other action items that came up during the meeting while it’s still fresh in my mind. I even schedule appointments for my personal events, like hiking, movies, or buying cheese at the farmer’s market. Having them in my calendar keeps me from scheduling work-related things into my personal time. Academics, myself included, have a habit of working more than 40 hours a week: “Let me just send this email real quick” can easily transform into “Well, there went my Saturday”.
I’ve been known to schedule reminders months or a year in advance, perhaps to catch up with someone about a project, to have a certain portion of a project completed by a soft deadline, or look up a grant RFA that will be made available approximately three months from now. Making good use of my calendar has been particularly important for tracking my time for reporting (or billing) purposes. BioBE and ESBL use the Intervals tracking program, and it’s much easier to report my time if I have a detailed account of it in my calendar. Even better- it’s great for retrospective reports:
The categorical break-down of how I have spent my time from June to November.
That time has been used for a number of different projects.
Perhaps the best use of my calendar has been to schedule themed time-blocks spanning several hours, such as “catching up on projects” or “data analysis”, specifically on a shared or public calendar to prevent time fractionation. These events are marked as tentative, so I can be scheduled during those times as needed, but I find that I get fewer requests for my time when I don’t have unclaimed space on the calendar. And, I can focus on a specific project for several hours, which I prefer to a “30 min here, 60 min there” approach. If possible, I also try to concatenate meetings, seminars, training and workshops, or other short but disruptive events. One or two stand-alone events can be a nice way to break up the day, but too many can fracture my time into small blocks and make it very difficult to effectively perform the researchportion of my work which is best accomplished when I can puzzle out problems at my own pace. So, I categorize the day as “administrative”, “socialmedia“, or “project management”, and spend the day taking care of all the other responsibilities I have that are tangential (but important) to my research.
Emails
Prioritizing my emails with flags is also really helpful, especially if you can color-codebyimportance. I get dozens of emails every day, from six different email accounts, but I keep my inboxes to less than 10 items each, almost every day. I spend a few minutes to prioritize them for later, I archive old emails into other folders for future reference, and I dedicate time to deal with my emails on a daily basis. I also liberally use the “unsubscribe” link.
Academics love to work outside the office- most often because the office is where everyone goes to find you for some reason. Coffee shops, parks, airports, and homes are popular locations for “writing caves” (I’m writing this from home right now). Being in a distraction-free, or distraction-specific (i.e. white noise of cafe chatter) location helps me focus on things without interruption. When I’m analyzing data or writing up results, I have multiple computer application windows open and am collating information from multiple sources, so I need to focus or else I waste a lot of time trying to pick up where I left off after every interruption.
Monty Python
When I’m stuck on something, sometimes I’ll take a walk- usually to go get coffee. Ok, always to go get coffee. Exercise stimulates blood flow and lattes are full of glucose, so it’s a perfect way for me to recharge. Often, that change of pace is all I need to accomplish in 2 min what I was struggling to put together earlier. My best ideas often coalesce while hiking or biking home, so I started taking pens and notepaper with me so I can write them down on the fly before I forget.
When possible, I also try not to force myself to work to continue working on specific things past the point where I can make progress on it (you know, for all those times I’m not up against a deadline- haha). Of course, this flexibility in my schedule during business hours is a privilege that most people don’t enjoy. It also takes a great deal of self-motivation to enforce, but it can be very effective for me. Instead, I set that project aside and focus on something else entirely. Often, this leads to procrastinating work with other work, but it’s productive nonetheless. But for me, it also leads to more effective work-life balance. Late afternoons are not a particularly productive time for me; it’s better if I leave early and go grocery shopping, and then work for a few hours in the evening or on Saturday mornings, when I can get an extremely productive hour or two in after I’ve had time to mull things over. Having down time built into your day has been shown to improve productivity.
Conversely, when I get new data, start writing a new grant, or acquire a novel task, my interest and enthusiasm are high and I’m tempted to drop everything else to start working on it. Following that passion for a day or a week gives me a great start in which to outline what I’ll do for the next few weeks or months. Then, as my enthusiasm ebbs, my thoughts wander, and other deadlines become more pressing, I can set it aside and pick that outline up later after I’ve thought it over. Collectively, these strategies allow me to be productive without reallocating time that I would otherwise use for sleeping, and without racing against the clock to submit something.
Find a system you like and stick to it
Everyone uses different technology and productivity applications, and everyone has a different style of organization, so you may have to try different things to find a method you like. But once you find something that works for you, stick with it. Too often I see people abandon a time management strategy because they don’t have time to invest in adapting to it. Maybe you have several hundred unread emails you don’t want to sort, maybe you are having syncing issues across multiple device operating systems, or maybe you keep forgetting to use your strategy because it hasn’t become habit. I encourage you to devote time to becoming comfortable with some time management strategy, as I can personally attest that it will pay off later.
A few months ago, I was invited to submit an article to the special issue “Plant Probiotic Bacteria: solutions to feed the World” in AIMS Microbiology on the interactions between agricultural plants and microorganisms. As my relevant projects are still being processed, I chose to write a review of the current literature regarding these interactions, and how they may be altered by different farming practices. The review is available as open-access here!
“Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity”
A thorough understanding of the services provided by microorganisms to the agricultural ecosystem is integral to understanding how management systems can improve or deteriorate soil health and production over the long term. Yet it is hampered by the difficulty in measuring the intersection of plant, microbe, and environment, in no small part because of the situational specificity to some plant-microbial interactions, related to soil moisture, nutrient content, climate, and local diversity. Despite this, perspective on soil microbiota in agricultural settings can inform management practices to improve the sustainability of agricultural production.
Citation: Suzanne L. Ishaq. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiology, 2017, 3(2): 335-353. doi: 10.3934/microbiol.2017.2.335
In a recent post on The Rare Knowledgesphere, I mentioned that I when I tell people that I went to graduate school or explain what I do now, the replies can be overly modest or self-deprecating. Sometimes, people tell me that they don’t feel smart enough to make it through grad school or to dowhatIdo. Graduate school or other professional schools aren’t for everyone, but there is a big difference between not wanting to go and not feeling good enough to go. In my experience, people who think they can’t do it aren’t so much incapable as incapacitated by Imposter Syndrome. In my 9 total years of acquiring higher education, plus 2 years and counting of post-doctoral training, I find that when it comes to academic success, academic achievement frequently takes a backseat to having the right personality. In this post, I thought it would be helpful to describe some of those qualities that help set the most successful researchers apart.
Learning is a skill
Don’t get me wrong, you need to pass the graduate record examinations (GREs- general and subject) in order to be accepted, be able to understand the material once you are there, do well on exams, and maintain a certain grade point average (GPA). While grades and exam performance can be good metrics for intelligence, there are a lot of circumstances that could preclude someone from doing well, thus they aren’t the only metrics. Certainly you need a solid knowledge base in any subject in order to participate in it. But I don’t usually get asked by people I pass on the sidewalk to explain how 20 different enzymes react instantaneously when you consume a meal in order to alter your metabolism to maintain homeostasis. I am asked on a daily basis to assimilate new information, process it, and then apply it to my work. Whether it is learning a new skill (like learning to perform a laboratory technique or how to analyze data I have not worked with before), whether it is evaluating a proposed experiment and looking for flaws in the experimental design, or whether it is reviewing someone’s manuscript for validity and publish-ability, I need to be able to learn new things efficiently.
Learning is a skill, just like wood-working or weight-lifting: you need to start small and practice regularly. Learning a new skill, language, or activity challenges us. Not only can it broaden our view of the world, but continuing to learn throughout your adult life can improve health and cognitive function: essentially, the more you learn the better you become at learning. In addition to physically performing new tasks, reading is a great way to inform yourself while improving your reading comprehension skills, verbal IQ, and critical thinking so that you can assess the accuracy of the information. Scientific texts, even for those who are trained to read them, can be extremely difficult to fully comprehend. Articles are full of very technical language, explain new concepts, and often rely on a certain amount of knowledge inherent to the field. It’s tempting to read quickly, but in order to do this you efficiently it can help to be systematic and thorough.
You may not feel you are ready for graduate school, that you belong in grad school, or that you are ready to leave, but grad school isn’t the end point- it’s a learning experience to become a good researcher. Even once you leave, you never stop learning. Good graduate students don’t have to know everything, but they do need to know how to learn and how to search for answers.
Put on a happy face
You don’t need to love grad school, your work, or the process of research every second of every day, and you don’t need to pretend to, either. It can be difficult, and like with any job, there are good days and bad days. A hardy personality falls a close second to being able to learn new skills. The road through graduate school is arduous and different for everyone, and it takes a tough person to make it out of the labyrinth of Academia. Moreover, you are truly surrounded by your peers; everyone in graduate school has already maintained a high GPA, passed the GREs, gotten into grad school, etc. You are probably never going to be the smartest or most accomplished person in the room again, certainly not for a long time.
You need to be able to take criticism, and not just the constructive kind: not everyone maintains polite professionalization and at some point, someone will bluntly tell you that you don’t belong in graduate school. For me, this occurred about two years in, when I submitted my first manuscript. A reviewer mistook my statement that a certain type of photosynthetic, water-based bacteria were present in the rumen of moose (who acquire them by drinking swamp water) for saying that those bacteria normally lived in the rumen of the moose, and commented that the latter was incorrect, that I did not know what I was doing, and that I did not belong in science. To be sure, being able to deliver information in journal articles in an accurate manner is critical, and if a reviewer mistakes what you say in a manuscript, then you need to clarify your statements. If a journal article is found to be unsuitable for publication, the reviewer can recommend it be rejected and offer commentary on how to improve re-submissions. However, it is widely accepted to be inappropriate and unprofessional to make personal comments in a review. I was taken aback at how one misinterpreted sentence in a 5,000 word article could lead someone who had never met me to determine that I wasn’t suited for science.
In the end, I clarified that sentence, resubmitted, and the paper got accepted. Four years later, that article has been viewed over 6,500 times and several other papers have come out identifying bacteria of that type living in the gastrointestinal tract of animals. Research is a competitive field, and by its nature requires repetition and trouble-shooting. You need to be able to fail on a daily basis and still find the enthusiasm to learn from the results and try it again tomorrow.
Two heads are better than one
Working well with others is extremely important in graduate school (and really any work environment). In graduate school, other people can challenge you, help you reason through problems, identify holes in your logic, or add a perspective based on their personal experiences. In science, you can never be an expert in everything, and to be able to really answer a research question you need to be able to look at it from different angles, methods, or fields. Collaborations with other scientists allow you to bring a breadth of expertise and techniques to bear in projects, and can improve the quality of your research (1, 2, 3).
However, it can be difficult to wrangle so many researchers, especially when everyone is so busy and projects may span years. Emotional intelligence, the ability to empathize, has been found to contribute to academic intelligence and can foster interpersonal relationships and collaborations. When money, prestige, and ideas are on the line, the drive to be recognized for your work needs to be balanced with empathy in service to completing the experiments and disseminating the results. At some point in academia, personal conflict will jeopardize a project. As much as you have a right to recognition and reward for your hard work, you need to remember that other project members are due the same. That being said, as a graduate student you don’t always feel in a position to negotiate and may feel pressured to minimize your contribution or the thanks to which you are due. Settling on an order for authorship, or credit for contributions, is a conversation that needs to happen early, often throughout the project, and inclusively to acknowledge that you all worked hard for this.
Organization
Being able to juggle taking classes, teaching and grading, performing research, attending meetings, and all the other hundred things one must do in an academic day, takes a high degree of coordination. Your calendar is your friend: schedule everything from meetings to reminders about tasks. And using shared calendars really helps to schedule meetings or remind others. There are plenty of apps that are specific to laboratory scheduling needs to help coordinate meetings or assign tasks across multiple parties.
30 Rock
Even more important these days is digital organization: whether it be your email or your hard drive. You need to be able to confidently curate and store data or electronic materials so that you or someone else can find them, even years later. You never know when you will need to resurrect an old project or check on a method you once used, and without a solid paper trail you may not be able to locate or understand your digital breadcrumbs. Lab notebooks, protocols, data files, and knowledge need to be accessible to future members, and it is your responsibility to make them available and intelligible. There is nothing more frustrating than finding an unlabelled box of samples in a freezer and being unable to identify their owner or contents. While the Intellectual Property might be yours, if that research or your salary was paid by a university or governmental agency, you have a responsibility to make that information public at some point.
A high degree of organization can help you manage your time, keep track of your results, coordinate with others, and maintain a project schedule.
A spoonful of extra-curricular helps the biochemistry go down
Work-week expectations, course load, teaching load, research load, and financial compensation of graduate students vary by the nature of their appointment, by university policy, or even by department within a university.
Graduate Teaching Assistants are paid a stipend for providing undergraduate teaching and other miscellaneous help to the department (typically 20 hours per week), and may receive tuition compensation for the classes they take. Depending on the nature of the program, they may do research as well in order to write a thesis (masters) or dissertation (doctorate), or not do any research for their degree (non-thesis major). Graduate Research Assistants (GRAs) are hired strictly to perform research (again, usually 20 hours per week), for which they receive a stipend and/or tuition compensation, and also take classes. Most programs require GRAs to teach for one semester to gain the experience, and GRAs are almost exclusively performing research for a thesis/dissertation-based degree. Regardless of the type of appointment, there are a certain number of classes and hours of research which must be logged before a degree may be obtained. Between courses, teaching, and research, there is enormous pressure on graduate students to work more than 40 hours per week.
It might seem that immersing yourself in graduate school is the best way to be a good student. Or, maybe you are overwhelmed by the amount of work you are being asked to accomplish and feel pressured to spend 12 – 18 hours a day at it just to meet deadlines. Firstly, you are not lab equipment and should not be treated as such. As a student, as an employee, and as a person, you have rights in the workplace. It’s worth looking into university policy to see exactly what it required of you. Secondly, over-working yourself is a terrible way to be more productive, as I discussed in a previous post on work-life balance. To summarize that post, over-working yourself negatively affects your health, your cognitive function, and the quality of your work. On the other hand, taking regular breaks and vacation can help keep you focused and solve abstract problems.
In addition to helping you manage stress, having an active life outside of your program helps give you other experiences from which you can draw upon to aid your graduate work. For example, I worked for several years at a small-animal veterinary hospital before going to graduate school, at which I trained employees and had extensive interactions with customers. There, I gained the skills to manage others, simplify technical information, be very specific in my instructions, or maintain a professional demeanor in the face of emotional or chaotic events. My interests in painting and photography have improved the quality and presentation of graphical results, or visually document my experiments.
Learn to Type
Seriously. I spend most of my time at a computer: reading, writing, cut/pasting. If you can type as quickly as you can gather your thoughts,you’ll find that you are much more productive.
Today, the research team that I am a part of submitted a grant which I co-wrote with Dr. Tim Seipel, along with Dr. Fabian Menalled, Dr. Pat Carr, and Dr. Zach Miller. We submitted to the Organic Transitions Program (ORG) through the US Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA). The culmination of months of work, and some 12+ hour days this past week to meet today’s deadline, this grant will hopefully fund some very exciting work in agriculture!
Research relies on grant money to fund projects, regardless of the type of institution performing the research, though commercial research centers may partially self-fund projects. Most new research hires to universities will receive a “start-up package” which includes some funding for a few years to buy equipment, pay for a small, preliminary project, or temporarily hire a technician. Start-up funds are designed to hold a researcher over for a year or two until they may apply for and receive grant funding of their own. Sooner or later, everyone in academia writes a grant.
Cartoon Credit
Grants may be available for application on a regular basis throughout the year, but some grant calls are specific to a topic and are made annually. These have one submission date during the year, and a large number of federal grants are due during in the first quarter of the year, a.k.a. Grant Season. University researchers find themselves incredibly pressed for time from January to March and will hole up in their office for days at a time to write complex grants. Despite the intention of starting your writing early, and taking the time to thoroughly discuss your project design with all your co-PDs well before you start writing to avoid having to rewrite it all again, most researchers can attest that these 20-30 pages grants can get written over from scratch 2 or 3 times, even before going through a dozen rounds of group editing.
The Bright Idea
Most large grants, providing several hundred thousand to over a million in funding over several years, require project teams with multiple primary researchers (called Principal Investigators or Project Directors) to oversee various aspects of research, in addition to other personnel (students, technicians, subcontractors). One researcher may conceptualize the project and approach other researchers (usually people they have worked with in the past, or new hires) to join the project. Project ideas may get mulled over for several years before they mature into full grant submissions, or go through multiple versions and submissions before they are perfected.
The grant I just co-wrote investigates the use of cover crops in Montana grain production. Briefly, cover crops are plant species which improve the soil quality but which you aren’t necessarily intending to eat or sell. They are grown in fields before or after the cash crop (ex. wheat) has been grown and harvested. Legumes like peas, beans, or alfalfa, are a popular choice because they fix nitrogen from its gaseous form in the atmosphere into a solid form in soil which other plants (like wheat) can use. Other popular cover crop plants are great at bio-remediation of contaminated soils, like those in the mustard family (1, 2, 3). Planting cover crops in an otherwise empty (fallow) field can out-compete weeds that may grow up later in the year, and they can prevent soil erosion from being blown or washed away (taking the nutrients with it). For our project, we wanted to know how different cover crop species affect the soil microbial diversity, reduce weeds, put nutrients back into soil, and improve the production of our crop.
We designed this project in conjunction with the Montana Organic Association, the Organic Advisory and Research Council, and Montana organic wheat farmers who wanted research done on specific cover crops that they might use, in order to create a portfolio of cover crops that each farmer could use in specific situations. As these organizations comprise producers from across the state, our research team was able to get perspective on which cover crops are being used already, what growing conditions they will and won’t work in (as much of Montana is extremely dry), and what production challenges growers face inherent to planting, managing, and harvesting different plant types.
Drafting Your Team
When you assemble a research team, you want to choose Project Directors who have different experiences and focuses and who will oversee different parts of the project. A well-crafted research team can bring their respective expertise to bear in designing a large and multi-faceted project. For our grant, I am the co-PD representing the microbial ecology and plant-microbe interaction facet, about a third of the scope of the grant. We will also be investigating these interactions under field settings, which requires a crop production and agroecology background, as well as expanding the MSU field days to include organic-specific workshops and webinars, which requires an extension specialty.
Because grant project teams are made up of researchers with their own projects and goals, in addition to providing valuable perspective they may also change the scope or design of your project. This can be extremely beneficial early on in the grant-writing phase, especially as you may not have considered the limitations of your study, or your goals are too unambitious or too lofty. For example, the cover crop species you want to test may not grow well under dry Montana conditions, do you have a back-up plan? However, as the submission deadline looms larger, changing the focus of your study can cost you precious writing time. Working in a research team requires a high degree of organization, a flair for communication, and an ability to work flexibly with others.
All grants center around a Project Narrative, and funding agencies will provide detailed instructions on how to format your project grant. Pay strict attention- in very competitive pools your grant can be flagged or rejected for not having the appropriate file names or section headers. The Narrative gives introductory background on your topic that details the research that has previously been published. Ideally, it also includes related studies that you and your team have published, and/or preliminary data from projects you are still working on. The aim is to provide a reasoned argument that you have correctly identified a problem, and that your project will fill in the knowledge gaps to work towards a solution. Grant panels are made up of researchers in a related field, but they may not be intimately aware of your type of research. So, you need to be very specific in explaining your reasoning for doing this study. If your justification seems weak, your project may be designated as “low priority” work and won’t get funded.
In our case, cover crops have been used by farmers already, but not much basic research has been done on the impacts of picking one species over another to plant. Thus, when cover crops fail, it may be unclear if it was because of unfavorable weather, because the previous crop influenced the soil in ways which were detrimental to your new crop, because you seeded your crop too sparsely and weeds were able to sneak in and out-compete, because you seeded too densely and your crop was competing with itself, or something else entirely.
You also need to identify the specific benefits of your project. Will you answer questions? Will you create a new product for research or commercial use? Will organic producers be able to use what you have learned to improve their farm production? Will you teach students? When you are identifying a need for knowledge and describing who or what will benefit from this study, you need to identify “stakeholders”. These are people who are interested in your work, not people who are directly financially invested. For us, our stakeholders are organic wheat farmers in Montana and the Northern Great Plains who want to integrate cover crops into their farming as an organic and sustainable way to improve crops and reduce environmental impact. Not only did our stakeholders directly inform our project design, but we will be working closely with them to host Field Day workshops, film informative webinars, and disseminate our results and recommendations to producers.
Crafting Your Experimental Plan
Once you have identified a problem or research question, you need to explain exactly how you will answer it. For experiments in the laboratory or field, you need to be incredibly specific about your design. How many samples will you take and when? Will you have biological replicates? Biological replicates are identical treatments on multiple individual organisms (like growing a single cover crop species in four different pots) to help you differentiate if the results you see are because of variation in how the individual grows or because of the treatment you used. Do you have technical replicates? Technical replication is when you analyze the same sample multiple times, like sequencing it twice to make sure that your technology creates reproducible results. Will you collect samples which will provide the right type of information to answer your question? Do your collection methods prevent sample deterioration, and how long will you keep your samples in case you need to repeat a test?
We then put each species into a bag to be dried and weighed.
We need to filter out the particles or they will clog the sprayer. Also pictured: Dr. Fabian Menalled.
The core sampler is used to collect soil from certain depths.
Climate change simulators.
In addition to describing exactly what you will do, you need to explain what might go wrong and how you will deal with that. This is called the Pitfalls and Limitations section. Because basic research needs to be done in controlled environments, your study may be limited by a “laboratory effect”: plants grown in a greenhouse will develop differently than they will in a field. Or, you might not be able to afford the gold-standard of data analysis (RNA sequencing of the transcriptome still costs hundreds of dollars per sample and we anticipate over 1,200 samples from this project) so you need to justify how other methods will still answer the question.
Supporting Documents
Even after explaining your research question in the Narrative and your design in the Methods sections, your grant-writing work is still far from complete. You will need to list all of the Equipment and research Facilities currently available to you to prove that your team can physically perform the experiment. If you will have graduate students, you need a Mentoring Plan to describe how the research team will train and develop the career of said student. If you will be working with people outside of the research team, you will need Letters of Support to show that your collaborators are aware of the project and have agreed to work with you, or that you have involved your stakeholders and they support your work. I was delighted by the enthusiasm shown towards this project by Montana organic producers and their willingness to write us letters of support with only a few days’ notice! You’ll also need a detailed timeline and plan for disseminating your results to make sure that you can meet project goals and inform your stakeholders.
Poster presentation at ASM 2016.
Perhaps the most difficult accessory document is the Budget, for which you must price out almost all the items you will be spending money on. Salary, benefits (ex. health insurance), tuition assistance, travel to scientific conferences, journal publication costs, travel to your research locations, research materials (ex. seeds, collection tubes, gloves, etc.), cost to analyze samples (ex. cost of sequencing or soil nutrient chemical analysis) cost to produce webinars, and every other large item must be priced out for each year of the grant. The Budget Narrative goes along with that, where you explain why you are requesting the dollar amount for each category and show that you have priced them out properly. For large pieces of equipment, you may need to include quotes from companies, or for travel to scientific conferences you may need airline and hotel prices to justify the costs.
On top of what you need to complete the study, called Direct Costs, you also need to request money for Indirect Costs. This is overhead that is paid to the institution that you will be working at to pay for the electricity, water, heating, building space, building security, or other utilities that you will use, as well as for the administrative support staff at the institution. Since nearly all grants are submitted through an organization (like universities), instead of as an individual, the university will handle the money and do all the accounting for you. Indirect costs pay for vital research support, but they run between 10-44% of the dollar amount that you ask for depending on the type of grant and institution, potentially creating a hefty financial burden that dramatically reduces the available funding for the project. On a $100,000 grant, you may find yourself paying $44,000 of that directly to the university.
The Budget is by far the most difficult piece to put together, because the amount of money you have available for different experiments will determine how many, how large, and how intensive they are. Often, specific methods or whole experiments are redesigned multiple times to fit within the financial constraints you have. If you factor in the experimental design changes that all your co-PDs are making on the fly, having to balance the budget and reconstruct your narrative on an hourly basis to reflect these changes, and the knowledge that some grants only fund 6-8 projects a year and if you miss this opportunity you may not have future salary to continue working at your job, it’s easy to see why so many researchers find Grant Season to be extremely stressful.
Agriculture is consistently Montana’s largest economic sector, but as an arid state we need to prepare for the challenges brought on by changing weather patterns. Yesterday, agricultural producers, scientists, special interest groups, lawmakers, and the general public came together at the Bozeman Public Library to talk about the future of climate change and what it means for people in the agricultural industry and research sector. The event was organized by Plowing Forward, a collaborative group to coordinate local Ag. education efforts.
“If you’ve eaten today, then you’re involved in agriculture.” -Chris Christiaens at the Plowing Forward meeting in Bozeman, MT, Feb 10, 2017
Opening remarks were led by Chris Christiaens, lobbyist and Project Specialist for the Montana Farmers Union, based in Great Falls, MT. Chris gave us some perspective on how Montana farming and ranching has changed over time, especially over the last 10 years,including changes to the growing season, harvest times, water usage, the types of plants which are able to survive here. He reminded us that the effect of climate on agriculture affects all of us.
Chris Christiaens, Project Specialist for Montana Farmers Union.
Next, we heard from Montana’s Senator Jon Tester, who runs a farm in northern Montana that has been in his family since 1912. The Senator spoke to his personal experiences with farming and how his management practices had adapted over the years to deal with changing temperature and water conditions. Importantly, he spoke about how agriculture is a central industry to the United States in ways that will become even more apparent in the coming years as the negative effects of climate change affect more and more areas. Food security, a peaceful way of life, and economic vitality (not just in Montana or the United States, but globally), were contingent upon supporting agricultural production under adverse events. He assured agricultural stakeholders that he continues to support production, research, and education, including the work we do in the laboratory as well as out in the field to promote agriculture.
Montana Senator Jon Tester
Next, we heard from three professors from Montana State University. Dr. Cathy Whitlock, a Professor of Earth Sciences, who is also the Director for the MSU Institute on Ecosystems, and a Lead Coordinator for the Montana Climate Assessment. The Montana Climate Assessment seeks to assemble past and current research on Montana climate in order to assess trends, make predictions about the future, and help both researchers and producers to tailor their efforts based on what is happening at the regional level. The Assessment is scheduled for release in August, 2017, and will allow for faster dissemination of research information online.
Dr. Whitlock’s introduction to the MCA was continued by Dr. Bruce Maxwell, a Professor of Agroecology, as well as the Agriculture Sector Lead for the Montana Climate Assessment. He summarized current research on the present water availability in Montana, as well as what we might see in the future. He warned that drier summers were likely, and while winters may get wetter, if they continue to get warmer that snow runoff will flow into rivers before the ground has thawed. This means snow melt will flow out of the region more quickly and not be added to local ground water sources for use here. To paraphrase Bruce, a longer growing season does you no good if you don’t have any water.
Dr. Bruce Maxwell, Montana State University
We also heard from my current post-doctoral advisor, Dr. Fabian Menalled, Professor of Weed Ecology Management and Cropland Weed Specialist (Extension). He presented some of the results from our ongoing project at Fort Ellis on the interactions between climate change (hot and dry conditions), farm management system (conventional or organic), disease status, and weed competition on wheat production. Increased temperatures and decreased moisture reduced wheat production but increased the amount of cheatgrass (downy brome), a weed which competes with wheat and can reduce wheat growth. My work on the soil bacterial diversity under these conditions didn’t make it into the final presentation, though. I have only just begun the data analysis, which will take me several months due to the complexity of our treatments, but here is a teaser: we know very little about soil bacteria, and the effects we are seeing are not exactly what we predicted!
Here is the video of Dr. Menalled’s presentation (just under 9 minutes):
Lastly, we heard from a local producer who spoke to his experience with ranching on a farm that had been run continuously for well over 100 years. His talk reflected the prevailing sentiment of the presentations: that farm practices had changed over the last few decades and people in agriculture were already responding to climate change, even if previously they wouldn’t put a name to it. The presentations concluded with a question and answer session with the entire panel, as well as a reminder that we all have the right and the obligation to be invested in our food system. Whether we grow produce or raise livestock for ourselves or others, whether we research these biological interactions, whether we set the policy that affects an entire industry, or whether we are just a consumer, we owe it to ourselves to get involved and make sure our voice is heard. To that end, I wrote a letter to my legislators (pictured below), and in the next few weeks I’ll be writing posts about how I participate in science (and agriculture) on the local and national level.
2016 started with a bang when I launched this site and joined Twitter for the first time! For the first quarter of the year, I was a post-doctoral researcher in the Yeoman Lab in the Department of Animal and Range Sciences at Montana State University. I was working on a total of eight grants, ranging from small fellowships to million dollar projects, both as a principal investigator and as a co-PI. I was also doing the bioinformatic analysis for multiple projects, totaling nearly 1,000 samples, as well as consulting with several graduate students about their own bioinformatic analyses.
In late spring, my position in the Yeoman lab concluded, and I began a post-doctoral position in the Menalled Lab in the Department of Land Resources and Environmental Sciences at MSU. This position gave me the opportunity to dramatically increase my skill-set and learn about plant-microbe interactions in agricultural fields. My main project over the summer was studying the effect of climate and other stresses on wheat production and soil microbial diversity, and this fall I have been investigating the legacy effects of these stressors on new plant growth and microbial communities. I have extracted the DNA from all of my Fort Ellis summer trial soil samples, and look forward to having new microbial data to work with in the new year. Based on the preliminary data, we are going to see some cool treatment effects!
Over the summer, I attended the American Society for Microbiology in Boston, MA in June, where I presented a poster on the microbial diversity in organic and conventional farm soil, and the Joint Annual Meeting for three different animal science professional societies in Salt Lake City, UT in July, where I gave my first two oral conference presentations. One was on the effect of a juniper-based diet on rumen bacteria in lambs, and the other was on the biogeography of the calf digestive system and how location-specific bacteria correlate to immune-factor expression.
Thanks to a lot of hard work from myself and many collaborators, a number of research projects were accepted for publication in scientific journals, including the microbial diversity of agricultural soils, in reindeer on a lichen diet, and in relation to high-fat diets in mice, it also included work on virulent strains of Streptococcus pyogenes, and a review chapter on the role of methanogens in human gastrointestinal disease.
This slideshow requires JavaScript.
Looking forward
A whopping thirteen manuscripts are still in review at scientific journals or are in preparation waiting to be submitted! Some of those are primarily my projects, and for others I added my skills to the work of other researchers. Editing all those is going to keep me plenty busy for the next few months. I’ll also be writing several more grants in early 2017, and writing a blog post about the Herculean task that can be.
I’ll be concluding my greenhouse study by March of 2017, just in time to prepare for another field season at Fort Ellis, on the aforementioned climate change study that is my main focus. In January, I’ll be spending time in the lab helping to process and sequence DNA from my 270 soil samples, and begin the long task of data quality assurance, processing, and analysis. I’m not worried, though, 270 samples isn’t the most I’ve worked with and bioinformatic analysis is my favorite part of the project!
This year, I am hoping to attend two conferences that I have never previously attended, and present data at both of them. The first will be the 2017 Congress on Gut Function in Chicago, IL in April, and the second will be the Ecological Society of America’s Annual Meeting in Portland, OR in August. Both conferences will give me the opportunity to showcase my work, network with researchers, and catch up with old friends.
If 2017 is anything like the past few years, it’s going to be full of new projects, new collaborators, new skills, and new opportunities for me, and I can’t wait! So much of what I’ve accomplished over the last year has been possible because of the hard work, enthusiasm, and creativity of my colleagues, students, friends, and family, and I continue to be grateful for their support. I’d also like to thank anyone who has been kind enough to read my posts throughout the last year; it’s been a pleasure putting my experiences into words for you and I appreciate the time and interest you put in. I look forward to sharing more science with you next year!
There’s been a lot of attention paid online lately to “Imposter Syndrome”. It’s that sneaking doubt that makes you feel like you don’t belong somewhere because you aren’t qualified, and eventually someone will realize the mistake and fire you. In short: that you are an Imposter. It’s extremely common among graduate students and young faculty. In fact, I haven’t met a graduate student that didn’t doubt themselves and whether they deserved their place in a research program at some point in their studies. Most studies on this phenomenon have been relatively small and in specific populations of people, thus estimates of affected individuals range from 40 to 70%, at some point in one’s life.
From my experience, in academia, Imposter Syndrome stems from feeling overwhelmed by the amount of information that you need to learn, or the amount that you need to accomplish. The interdisciplinary approach to graduate studies has increased the number of scientific fields you now need to be familiar with, and compounds the amount of material that you have to memorize. This seems to leave many students feeling inadequate and dumb, because they are unable to perfectly recall every fact they learned in two or three years worth of graduate courses. For post-doctoral researchers and assistant professors, your To-Do list only grows longer by the day, as the reduction in federal funding increases the competition for fewer and fewer job postings and more pressure to distinguish yourself. These tasks seem insurmountable, and that you simply aren’t up to them. You start to doubt your abilities, and think that there has been some mistake. You think, someone will realize how dumb I am, and that I don’t deserve to be here.
At best, Imposter Syndrome makes you nervous, at worst, it can lead to a lot of work-place stress and low self esteem. It can also prevent you from taking risks in your research, or being ambitious in the positions you apply for, or make you feel guilty about taking time off when you feel that you should be using the time for career development.
Imposter Syndrome, or more clinically, Imposter Phenomenon, has been studied for several decades, and is reviewed thoroughly here. Originally it was thought to be a symptom found only in professional women who weren’t emotionally strong enough to deal with the stress of the workplace. Later, after it was described by Dr. Pauline Clance in 1985, and observed in many different careers and both genders, we came to understand that this sexist stereotype was in fact common to high-achievers, “perfectionists”, and those with anxiety and the motivation to succeed.
Correlations have also been found between feeling like an imposter and low or conflicting family member support, low self-esteem or general self-doubt, neurotic behaviors, or when there are negative consequences to achieving success. For example, if a person is ostracized by friends or family for working hard, studying, getting an education, or generally wanting a “better life” than the cohort has. This can also occur when there is jealousy or competition between coworkers, where a promotion or other success would alienate you.
Own your success
When graduate students express feelings of self-doubt to me, I remind them that they already got into grad school. Their graduate program was satisfied by their application, their PI or advisor chose them for their accomplishments. I remind them that in academia, you can’t compare yourself to anyone else. Everyone has come from different backgrounds, has different work experience, took different classes, read different papers, and has different research and career goals. Maybe you got PhD but you don’t want to do research, only teach. Maybe you only want to do research. Maybe you want to publish ten papers a year, or maybe you only want to publish once a year because that is more consistent with the pace of your research and the type of work that you do. Maybe you have more post-docs who work on complicated questions, or maybe you have undergraduates and your projects are smaller. Some research fields (especially literal fields) can’t be rushed, and it’s unrealistic to expect prolific publications from everyone. Cognitive behavior therapy guidelines for dealing with Imposter Syndrome recommend distancing yourself from the need for validation from others, to improve your self-awareness about your own abilities and needs, and to lessen the feeling that you need to hide the real you.
There is no litmus test for whether you are a “good graduate student”, or a “successful researcher”, except for your own demanding self-assessment. All you can do is try to set realistic goals for yourself. And not vague, large ones, such as “I want to publish 5 papers this year”. Be more specific, and more short-term: “This week, I want to finish the Methods section of this paper, and hopefully have a working draft of this manuscript by the end of the month”. I also find it helpful to keep a written record of what I’ve done. Maybe keep a running To-Do list, and at the end of the week, month, or year, look back and see all of the things you have crossed off. This is most helpful to me when I find that projects are getting delayed, or analyses need to be redone, or I generally feel like I am spinning my wheels. Or, when I write a number of grants but some of them don’t even get submitted. I still did all that work, but if I don’t have that item crossed off my list, I don’t have a visual reminder that I accomplished something.
And keeping a tally of everything you’ve done- not just the things that get published, can help you prove your worth and your effort when it comes time for job assessment. Whether it’s a weekly meeting with your PI where you need to account for how you’ve spent your time, an annual performance review, or the tenure process. If you have a written record of all the things you have done, all the little things that you spent your time on, you have proof that you have been productive. Remember that success and failure are often out of your hands- especially in research. Sometimes all you can do is try your best and hope that your fairy grant-mother rates your proposal wish as “outstanding”.
In the first installment of the work-life balance discussion, I discussed the different levels of employment for university faculty and gave general information on the different functions they performed on a daily basis. I also talked about how many of them work longer than 40 hours a week, including nights and weekends, and may even work summers without compensation. For example, in a 1994 report, the American Association of University Professors reported that professors worked 48-52 hours per week, and this had increased to 53 hours by 2005. Other sources over the past five years have reported more: 57 hours per week at a Canadian research institution, 50-60 hours per week in the UK. But like with anything, work quantity does not equate to quality.
All work and no play makes Jack a dull boy
For one thing, working long hours without sufficient weekly time off, or vacations, can significantly increase stress. And this stress can lead to all sorts of different mental and physical problems. Working long hours can interfere with our normal circadian rhythm– it can disrupt our sleep cycles, throw off our eating times and appetite, and make it difficult to exercise regularly. Longer hours have been directly correlated with incidence of hypertension and other cardiovascular problems (also reviewed here).
Moreover, long work hours and work stress can negatively impact mental health (1, 2, 3, 4), and increase the use of legal and illegal substances (reviewed here). A study of work hours on over 330,000 participants in 61 countries found that working more than 48 hours a week was associated with heavy drinking in both men and women. Stress, lack of sleep, and a subsequent difficulty paying attention can also increase the frequency of injury at work, and this injury rate directly relates to the increase in hours. Jobs with overtime hours have been associated with as much as 61% more work-related injuries than those without. In fact, there is so much research on stress, health, and occupation, that there are numerous journals solely dedicated to reporting on those findings: The International Journal of Stress Management, Occupational and Environmental Medicine, The Journal of Occupational and Organizational Psychology, just to name a few.
Having a life makes us better employees
But for all that personal sacrifice, mounting evidence shows that a reduction in work hours is what promotes productivity, not a 24-hour work day. Reducing weekly hours increased productivity as employees were less likely to be absent from work due to poor health (reviewed here). Taking scheduled breaks instead of skipping them was also responsible for improving cognitive function in students. Even brief diversions were shown to improve focus and cognitive function. Besides giving us a rest from our current task, or engaging our attention with something novel, taking a break allows us to daydream. While this may seem like a waste of time, letting our minds wander activates different parts of our brain- including those involved in problem solving and creative thinking. If you’ve ever come up with a brilliant solution while doing mundane tasks, then you’ve experienced this. For my part, I tend to think of great ideas when I’m washing dishes or biking home. Daydreaming, or taking a break, also helps release dopamine, a chemical neurotransmitter involved in movement, emotions, motivation, and rewards. It’s very helpful in the creative process, as explained in a discussion of creativity in the shower.Restful thinking also seems to be involved with promoting divergent thinking, emotional connectivity, and reading comprehension.
Going on regular annual vacations was correlated with a lower risk for coronary heart disease: not only are vacations great for reducing stress, but they also provide opportunities for more exercise, mental downtime, and creative outlets. Mandatory time-off during nights and weekends for consultants resulted in a reported increase job performance, mental health, and attitude, though many said it was a struggle to enforce “time outs” from work in the beginning because they felt guilty about not working during their personal time. This was seen again in a study of Staples managers who did not take scheduled breaks out of guilt.
It’s this persistent feeling that you should be working at home, and that you could be doing more, which is largely reported by “driven” employees and workaholics. This feeling has lately been coined “tele-pressure“. It’s particularly invasive these days as you have access to work emails and other communications via smart phones, laptops, or tablets. In fact, by syncing many of these devices, your attention is compelled by multiple simultaneous electronic signals and vibrations whenever someone contacts you. It’s no wonder we can’t shut off at the end of the day. (And for the record, I wrote this on a Sunday evening.)
More important than knowing that taking regular breaks and vacations will help manage your stress and improve your productivity, is remembering that you are entitled to it. We have labor laws for a reason, and you are entitled to your nights, weekends, and your X number of weeks a year. You are entitled to stay home when you are sick, or whenever you feel like it. It’s your personal time, take it.
So, if you’re in academia, what do you do to unwind? Leave me some comments!