Draft twice, submit once: the grant writing process

Today, the research team that I am a part of submitted a grant which I co-wrote with Dr. Tim Seipel, along with Dr. Fabian Menalled, Dr. Pat Carr, and Dr. Zach Miller. We submitted to the Organic Transitions Program (ORG) through the US Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA).  The culmination of months of work, and some 12+ hour days this past week to meet today’s deadline, this grant will hopefully fund some very exciting work in agriculture!

Research relies on grant money to fund projects, regardless of the type of institution performing the research, though commercial research centers may partially self-fund projects.  Most new research hires to universities will receive a “start-up package” which includes some funding for a few years to buy equipment, pay for a small, preliminary project, or temporarily hire a technician. Start-up funds are designed to hold a researcher over for a year or two until they may apply for and receive grant funding of their own.  Sooner or later, everyone in academia writes a grant.

Cartoon Credit

Grants may be available for application on a regular basis throughout the year, but some grant calls are specific to a topic and are made annually.  These have one submission date during the year, and a large number of federal grants are due during in the first quarter of the year, a.k.a. Grant Season.  University researchers find themselves incredibly pressed for time from January to March and will hole up in their office for days at a time to write complex grants.  Despite the intention of starting your writing early, and taking the time to thoroughly discuss your project design with all your co-PDs well before you start writing to avoid having to rewrite it all again, most researchers can attest that these 20-30 pages grants can get written over from scratch 2 or 3 times, even before going through a dozen rounds of group editing.

The Bright Idea

Most large grants, providing several hundred thousand to over a million in funding over several years, require project teams with multiple primary researchers (called Principal Investigators or Project Directors) to oversee various aspects of research, in addition to other personnel (students, technicians, subcontractors).  One researcher may conceptualize the project and approach other researchers (usually people they have worked with in the past, or new hires) to join the project.  Project ideas may get mulled over for several years before they mature into full grant submissions, or go through multiple versions and submissions before they are perfected.

The grant I just co-wrote investigates the use of cover crops in Montana grain production.  Briefly, cover crops are plant species which improve the soil quality but which you aren’t necessarily intending to eat or sell.  They are grown in fields before or after the cash crop (ex. wheat) has been grown and harvested.  Legumes like peas, beans, or alfalfa, are a popular choice because they fix nitrogen from its gaseous form in the atmosphere into a solid form in soil which other plants (like wheat) can use.  Other popular cover crop plants are great at bio-remediation of contaminated soils, like those in the mustard family (1, 2, 3). Planting cover crops in an otherwise empty (fallow) field can out-compete weeds that may grow up later in the year, and they can prevent soil erosion from being blown or washed away (taking the nutrients with it).  For our project, we wanted to know how different cover crop species affect the soil microbial diversity, reduce weeds, put nutrients back into soil, and improve the production of our crop.

We designed this project in conjunction with the Montana Organic Association, the Organic Advisory and Research Council, and Montana organic wheat farmers who wanted research done on specific cover crops that they might use, in order to create a portfolio of cover crops that each farmer could use in specific situations.  As these organizations comprise producers from across the state, our research team was able to get perspective on which cover crops are being used already, what growing conditions they will and won’t work in (as much of Montana is extremely dry), and what production challenges growers face inherent to planting, managing, and harvesting different plant types.

Drafting Your Team

When you assemble a research team, you want to choose Project Directors who have different experiences and focuses and who will oversee different parts of the project.  A well-crafted research team can bring their respective expertise to bear in designing a large and multi-faceted project.  For our grant, I am the co-PD representing the microbial ecology and plant-microbe interaction facet, about a third of the scope of the grant.  We will also be investigating these interactions under field settings, which requires a crop production and agroecology background, as well as expanding the MSU field days to include organic-specific workshops and webinars, which requires an extension specialty.

Because grant project teams are made up of researchers with their own projects and goals, in addition to providing valuable perspective they may also change the scope or design of your project.  This can be extremely beneficial early on in the grant-writing phase, especially as you may not have considered the limitations of your study, or your goals are too unambitious or too lofty.  For example, the cover crop species you want to test may not grow well under dry Montana conditions, do you have a back-up plan?  However, as the submission deadline looms larger, changing the focus of your study can cost you precious writing time.  Working in a research team requires a high degree of organization, a flair for communication, and an ability to work flexibly with others.

Identifying the research question

Image Credit

All grants center around a Project Narrative, and funding agencies will provide detailed instructions on how to format your project grant.  Pay strict attention- in very competitive pools your grant can be flagged or rejected for not having the appropriate file names or section headers.  The Narrative gives introductory background on your topic that details the research that has previously been published.  Ideally, it also includes related studies that you and your team have published, and/or preliminary data from projects you are still working on.  The aim is to provide a reasoned argument that you have correctly identified a problem, and that your project will fill in the knowledge gaps to work towards a solution.  Grant panels are made up of researchers in a related field, but they may not be intimately aware of your type of research.  So, you need to be very specific in explaining  your reasoning for doing this study.  If your justification seems weak, your project may be designated as “low priority” work and won’t get funded.

In our case, cover crops have been used by farmers already, but not much basic research has been done on the impacts of picking one species over another to plant.  Thus, when cover crops fail, it may be unclear if it was because of unfavorable weather, because the previous crop influenced the soil in ways which were detrimental to your new crop, because you seeded your crop too sparsely and weeds were able to sneak in and out-compete, because you seeded too densely and your crop was competing with itself, or something else entirely.

You also need to identify the specific benefits of your project.  Will you answer questions? Will you create a new product for research or commercial use?  Will organic producers be able to use what you have learned to improve their farm production?  Will you teach students?  When you are identifying a need for knowledge and describing who or what will benefit from this study, you need to identify “stakeholders”.  These are people who are interested in your work, not people who are directly financially invested.  For us, our stakeholders are organic wheat farmers in Montana and the Northern Great Plains who want to integrate cover crops into their farming as an organic and sustainable way to improve crops and reduce environmental impact.  Not only did our stakeholders directly inform our project design, but we will be working closely with them to host Field Day workshops, film informative webinars, and disseminate our results and recommendations to producers.

Crafting Your Experimental Plan

Once you have identified a problem or research question, you need to explain exactly how you will answer it.  For experiments in the laboratory or field, you need to be incredibly specific about your design.  How many samples will you take and when?  Will you have biological replicates?  Biological replicates are identical treatments on multiple individual organisms (like growing a single cover crop species in four different pots) to help you differentiate if the results you see are because of variation in how the individual grows or because of the treatment you used.  Do you have technical replicates?  Technical replication is when you analyze the same sample multiple times, like sequencing it twice to make sure that your technology creates reproducible results.  Will you collect samples which will provide the right type of information to answer your question?  Do your collection methods prevent sample deterioration, and how long will you keep your samples in case you need to repeat a test?

In addition to describing exactly what you will do, you need to explain what might go wrong and how you will deal with that.  This is called the Pitfalls and Limitations section.  Because basic research needs to be done in controlled environments, your study may be limited by a “laboratory effect”: plants grown in a greenhouse will develop differently than they will in a field.  Or, you might not be able to afford the gold-standard of data analysis (RNA sequencing of the transcriptome still costs hundreds of dollars per sample and we anticipate over 1,200 samples from this project) so you need to justify how other methods will still answer the question.

Supporting Documents

Even after explaining your research question in the Narrative and your design in the Methods sections, your grant-writing work is still far from complete.  You will need to list all of the Equipment and research Facilities currently available to you to prove that your team can physically perform the experiment.  If you will have graduate students, you need a Mentoring Plan to describe how the research team will train and develop the career of said student.  If you will be working with people outside of the research team, you will need Letters of Support to show that your collaborators are aware of the project and have agreed to work with you, or that you have involved your stakeholders and they support your work.  I was delighted by the enthusiasm shown towards this project by Montana organic producers and their willingness to write us letters of support with only a few days’ notice!  You’ll also need a detailed timeline and plan for disseminating your results to make sure that you can meet project goals and inform your stakeholders.

Poster presentation at ASM 2016.

Perhaps the most difficult accessory document is the Budget, for which you must price out almost all the items you will be spending money on.  Salary, benefits (ex. health insurance), tuition assistance, travel to scientific conferences, journal publication costs, travel to your research locations, research materials (ex. seeds, collection tubes, gloves, etc.), cost to analyze samples (ex. cost of sequencing or soil nutrient chemical analysis) cost to produce webinars, and every other large item must be priced out for each year of the grant.  The Budget Narrative goes along with that, where you explain why you are requesting the dollar amount for each category and show that you have priced them out properly.  For large pieces of equipment, you may need to include quotes from companies, or for travel to scientific conferences you may need airline and hotel prices to justify the costs.

Cartoon Credit

On top of what you need to complete the study, called Direct Costs, you also need to request money for Indirect Costs.  This is overhead that is paid to the institution that you will be working at to pay for the electricity, water, heating, building space, building security, or other utilities that you will use, as well as for the administrative support staff at the institution. Since nearly all grants are submitted through an organization (like universities), instead of as an individual, the university will handle the money and do all the accounting for you. Indirect costs pay for vital research support, but they run between 10-44% of the dollar amount that you ask for depending on the type of grant and institution, potentially creating a hefty financial burden that dramatically reduces the available funding for the project.  On a $100,000 grant, you may find yourself paying $44,000 of that directly to the university.

Cartoon Credit

Draft Twice, Submit Once

The Budget is by far the most difficult piece to put together, because the amount of money you have available for different experiments will determine how many, how large, and how intensive they are.  Often, specific methods or whole experiments are redesigned multiple times to fit within the financial constraints you have.  If you factor in the experimental design changes that all your co-PDs are making on the fly, having to balance the budget and reconstruct your narrative on an hourly basis to reflect these changes, and the knowledge that some grants only fund 6-8 projects a year and if you miss this opportunity you may not have future salary to continue working at your job, it’s easy to see why so many researchers find Grant Season to be extremely stressful.

Cartoon Credit

Featured Image Credit

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s