Anyone can Science, step 3: show your support

The political climate of 2017 has already raised several causes for concern among U.S. scientists: from politicians who reject current scientific theory, to dramatic cuts proposed to federal or state budgets for research (and jobs), to enacting hiring freezes and stopping grant payments, to policy changes which would allow for governmental oversight on which and how results were disseminated (a gag order).  Certainly, other administrations have suggested or enacted scientific budget cuts, or called for hiring freezes and gag orders, but never before has a president and White House administration so clearly come out against scientific literacy, education, research, and policy.

This change of political tone has encouraged many scientists to voice their concerns, but we scientists also need the support of the general public.  After all, science is largely designed to improve the lives and economies of everyone.  According to the U.S. Bureau of Labor Statistics, STEM jobs accounted for 8.6 million US jobs in 2015 in the U.S., but an estimated 26 million jobs (20% of jobs in 2011) require knowledge of a STEM field, a sector that consistently has low rates of unemployment, and expands the US economy.  Thus, even without thinking about the politics of science, we can agree that scientific research is a vital part of the U.S. economy.  Additionally, 93% of STEM occupations have wages above the national average.  If you are a scientist, know a scientist, or generally want to show your support, here are some ways you can get involved.

March for Science

Signing petitions, wearing slogans, and being vocal to legislatures and the public about your support is wonderful, but a show of solidarity can bring people together to effect change.

On Saturday April 22, 2017, people will March for Science in cities across the United States to peacefully show their support for scientific literacy, education, policy, and freedom of speech.  Please consider joining them.

You can find a march near you, here.  A number of scientific organizations have endorsed the March for Science, including (in no particular order) the Union of Concerned Scientists, the Georgia Academy of Science, the National Science Teachers Association, the American Public Health Association, the American Geophysical Union, the American Chemical Society, the American Association for the Advancement of Science, and others.  And if you need inspiration for a sign or an outfit, there are lots of places that are ready to help you out.

Financial Support

As I discussed in a previous post about research grant money, financial support of science is always welcome.  There are lots of ways to contribute, whether it’s donating to organizations to fund research for specific medical conditions, participating in a crowd-funding campaign to raise money or get equipment donated, becoming a member or donating to scientific advancement organizations, or even just taking a grad student out to lunch.

Rock the Vote

Support for scientific funding, education, and policy may not be at the top of your list of reasons for supporting political candidates, but it should be on there somewhere.  After the first few months of 2017, a number of scientists have decided to hang up their lab coat and run for public office, so you’ll have plenty of options in the coming elections.


I would like to acknowledge Drs. Irene Grimberg and Fabian Menalled for their edits to this post, as well as the ongoing efforts of my editor, Mike Haselton, MA, towards improving my writing.

Featured Image.

Draft twice, submit once: the grant writing process

Today, the research team that I am a part of submitted a grant which I co-wrote with Dr. Tim Seipel, along with Dr. Fabian Menalled, Dr. Pat Carr, and Dr. Zach Miller. We submitted to the Organic Transitions Program (ORG) through the US Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA).  The culmination of months of work, and some 12+ hour days this past week to meet today’s deadline, this grant will hopefully fund some very exciting work in agriculture!

Research relies on grant money to fund projects, regardless of the type of institution performing the research, though commercial research centers may partially self-fund projects.  Most new research hires to universities will receive a “start-up package” which includes some funding for a few years to buy equipment, pay for a small, preliminary project, or temporarily hire a technician. Start-up funds are designed to hold a researcher over for a year or two until they may apply for and receive grant funding of their own.  Sooner or later, everyone in academia writes a grant.

startup
Cartoon Credit

Grants may be available for application on a regular basis throughout the year, but some grant calls are specific to a topic and are made annually.  These have one submission date during the year, and a large number of federal grants are due during in the first quarter of the year, a.k.a. Grant Season.  University researchers find themselves incredibly pressed for time from January to March and will hole up in their office for days at a time to write complex grants.  Despite the intention of starting your writing early, and taking the time to thoroughly discuss your project design with all your co-PDs well before you start writing to avoid having to rewrite it all again, most researchers can attest that these 20-30 pages grants can get written over from scratch 2 or 3 times, even before going through a dozen rounds of group editing.

The Bright Idea

Most large grants, providing several hundred thousand to over a million in funding over several years, require project teams with multiple primary researchers (called Principal Investigators or Project Directors) to oversee various aspects of research, in addition to other personnel (students, technicians, subcontractors).  One researcher may conceptualize the project and approach other researchers (usually people they have worked with in the past, or new hires) to join the project.  Project ideas may get mulled over for several years before they mature into full grant submissions, or go through multiple versions and submissions before they are perfected.

The grant I just co-wrote investigates the use of cover crops in Montana grain production.  Briefly, cover crops are plant species which improve the soil quality but which you aren’t necessarily intending to eat or sell.  They are grown in fields before or after the cash crop (ex. wheat) has been grown and harvested.  Legumes like peas, beans, or alfalfa, are a popular choice because they fix nitrogen from its gaseous form in the atmosphere into a solid form in soil which other plants (like wheat) can use.  Other popular cover crop plants are great at bio-remediation of contaminated soils, like those in the mustard family (1, 2, 3). Planting cover crops in an otherwise empty (fallow) field can out-compete weeds that may grow up later in the year, and they can prevent soil erosion from being blown or washed away (taking the nutrients with it).  For our project, we wanted to know how different cover crop species affect the soil microbial diversity, reduce weeds, put nutrients back into soil, and improve the production of our crop.

We designed this project in conjunction with the Montana Organic Association, the Organic Advisory and Research Council, and Montana organic wheat farmers who wanted research done on specific cover crops that they might use, in order to create a portfolio of cover crops that each farmer could use in specific situations.  As these organizations comprise producers from across the state, our research team was able to get perspective on which cover crops are being used already, what growing conditions they will and won’t work in (as much of Montana is extremely dry), and what production challenges growers face inherent to planting, managing, and harvesting different plant types.

Drafting Your Team

When you assemble a research team, you want to choose Project Directors who have different experiences and focuses and who will oversee different parts of the project.  A well-crafted research team can bring their respective expertise to bear in designing a large and multi-faceted project.  For our grant, I am the co-PD representing the microbial ecology and plant-microbe interaction facet, about a third of the scope of the grant.  We will also be investigating these interactions under field settings, which requires a crop production and agroecology background, as well as expanding the MSU field days to include organic-specific workshops and webinars, which requires an extension specialty.

Because grant project teams are made up of researchers with their own projects and goals, in addition to providing valuable perspective they may also change the scope or design of your project.  This can be extremely beneficial early on in the grant-writing phase, especially as you may not have considered the limitations of your study, or your goals are too unambitious or too lofty.  For example, the cover crop species you want to test may not grow well under dry Montana conditions, do you have a back-up plan?  However, as the submission deadline looms larger, changing the focus of your study can cost you precious writing time.  Working in a research team requires a high degree of organization, a flair for communication, and an ability to work flexibly with others.

Identifying the research question

scienceeducation
Image Credit

All grants center around a Project Narrative, and funding agencies will provide detailed instructions on how to format your project grant.  Pay strict attention- in very competitive pools your grant can be flagged or rejected for not having the appropriate file names or section headers.  The Narrative gives introductory background on your topic that details the research that has previously been published.  Ideally, it also includes related studies that you and your team have published, and/or preliminary data from projects you are still working on.  The aim is to provide a reasoned argument that you have correctly identified a problem, and that your project will fill in the knowledge gaps to work towards a solution.  Grant panels are made up of researchers in a related field, but they may not be intimately aware of your type of research.  So, you need to be very specific in explaining  your reasoning for doing this study.  If your justification seems weak, your project may be designated as “low priority” work and won’t get funded.

In our case, cover crops have been used by farmers already, but not much basic research has been done on the impacts of picking one species over another to plant.  Thus, when cover crops fail, it may be unclear if it was because of unfavorable weather, because the previous crop influenced the soil in ways which were detrimental to your new crop, because you seeded your crop too sparsely and weeds were able to sneak in and out-compete, because you seeded too densely and your crop was competing with itself, or something else entirely.

You also need to identify the specific benefits of your project.  Will you answer questions? Will you create a new product for research or commercial use?  Will organic producers be able to use what you have learned to improve their farm production?  Will you teach students?  When you are identifying a need for knowledge and describing who or what will benefit from this study, you need to identify “stakeholders”.  These are people who are interested in your work, not people who are directly financially invested.  For us, our stakeholders are organic wheat farmers in Montana and the Northern Great Plains who want to integrate cover crops into their farming as an organic and sustainable way to improve crops and reduce environmental impact.  Not only did our stakeholders directly inform our project design, but we will be working closely with them to host Field Day workshops, film informative webinars, and disseminate our results and recommendations to producers.

Crafting Your Experimental Plan

Once you have identified a problem or research question, you need to explain exactly how you will answer it.  For experiments in the laboratory or field, you need to be incredibly specific about your design.  How many samples will you take and when?  Will you have biological replicates?  Biological replicates are identical treatments on multiple individual organisms (like growing a single cover crop species in four different pots) to help you differentiate if the results you see are because of variation in how the individual grows or because of the treatment you used.  Do you have technical replicates?  Technical replication is when you analyze the same sample multiple times, like sequencing it twice to make sure that your technology creates reproducible results.  Will you collect samples which will provide the right type of information to answer your question?  Do your collection methods prevent sample deterioration, and how long will you keep your samples in case you need to repeat a test?

In addition to describing exactly what you will do, you need to explain what might go wrong and how you will deal with that.  This is called the Pitfalls and Limitations section.  Because basic research needs to be done in controlled environments, your study may be limited by a “laboratory effect”: plants grown in a greenhouse will develop differently than they will in a field.  Or, you might not be able to afford the gold-standard of data analysis (RNA sequencing of the transcriptome still costs hundreds of dollars per sample and we anticipate over 1,200 samples from this project) so you need to justify how other methods will still answer the question.

Supporting Documents

Even after explaining your research question in the Narrative and your design in the Methods sections, your grant-writing work is still far from complete.  You will need to list all of the Equipment and research Facilities currently available to you to prove that your team can physically perform the experiment.  If you will have graduate students, you need a Mentoring Plan to describe how the research team will train and develop the career of said student.  If you will be working with people outside of the research team, you will need Letters of Support to show that your collaborators are aware of the project and have agreed to work with you, or that you have involved your stakeholders and they support your work.  I was delighted by the enthusiasm shown towards this project by Montana organic producers and their willingness to write us letters of support with only a few days’ notice!  You’ll also need a detailed timeline and plan for disseminating your results to make sure that you can meet project goals and inform your stakeholders.

0619160801
Poster presentation at ASM 2016.

Perhaps the most difficult accessory document is the Budget, for which you must price out almost all the items you will be spending money on.  Salary, benefits (ex. health insurance), tuition assistance, travel to scientific conferences, journal publication costs, travel to your research locations, research materials (ex. seeds, collection tubes, gloves, etc.), cost to analyze samples (ex. cost of sequencing or soil nutrient chemical analysis) cost to produce webinars, and every other large item must be priced out for each year of the grant.  The Budget Narrative goes along with that, where you explain why you are requesting the dollar amount for each category and show that you have priced them out properly.  For large pieces of equipment, you may need to include quotes from companies, or for travel to scientific conferences you may need airline and hotel prices to justify the costs.

Begging
Cartoon Credit

On top of what you need to complete the study, called Direct Costs, you also need to request money for Indirect Costs.  This is overhead that is paid to the institution that you will be working at to pay for the electricity, water, heating, building space, building security, or other utilities that you will use, as well as for the administrative support staff at the institution. Since nearly all grants are submitted through an organization (like universities), instead of as an individual, the university will handle the money and do all the accounting for you. Indirect costs pay for vital research support, but they run between 10-44% of the dollar amount that you ask for depending on the type of grant and institution, potentially creating a hefty financial burden that dramatically reduces the available funding for the project.  On a $100,000 grant, you may find yourself paying $44,000 of that directly to the university.

comicnov9_2014_overhead
Cartoon Credit

Draft Twice, Submit Once

The Budget is by far the most difficult piece to put together, because the amount of money you have available for different experiments will determine how many, how large, and how intensive they are.  Often, specific methods or whole experiments are redesigned multiple times to fit within the financial constraints you have.  If you factor in the experimental design changes that all your co-PDs are making on the fly, having to balance the budget and reconstruct your narrative on an hourly basis to reflect these changes, and the knowledge that some grants only fund 6-8 projects a year and if you miss this opportunity you may not have future salary to continue working at your job, it’s easy to see why so many researchers find Grant Season to be extremely stressful.

Review_panel.JPG
Cartoon Credit

Featured Image Credit

Anyone can Science, step 2: join the team

Great news: you can participate in science without going through a decade of higher education (sorry grad students, but thanks for your service!). There are two ways to do this: either you can volunteer to collect samples for a project, or you can volunteer to be the sample for a project.  You can volunteer through the National Institutes of Health,  third-party match sites that help recruit volunteers for large projects, independent research centers (that are usually under contract to run a study), and most universities and colleges have volunteer-recruiting websites.

Get out there and collect

There is a myriad of environmental science studies that rely on volunteers to collect samples, which may take place in very specific areas, or globally.  Some are simple  wildlife surveys, often through conservation societies like the Audubon Society, which use volunteers’ bird sightings to estimate populations.  Humanitarian volunteer agencies may recruit volunteers for global research studies, as well.  Some projects require more technical sampling, or require participants to travel to distant or difficult to reach places, and thus rely on outdoors-people with the gear and ability to safely retrieve water, soil, plants, animal hair or feces, you name it!  There are some excellent examples of global projects which can be found through Adventure Scientists.  AS recruits and trains volunteers for more difficult environmental sampling, and I am currently participating in their Gallatin Microplastics Initiative (year 1 and 2) along with my sampling team: Lee and Izzy.

This slideshow requires JavaScript.

‘Host’ your own research

Volunteering to be the sample also allows you to participate on a sliding scale of involvement.  For example, observational studies only collect information on what is already happening.  These might be sociology (human behavior) studies which only require you to fill out surveys (often online) on your personal history or normal routines. You can also donate biological samples (hair, breathe, blood, urine, feces, skin scrapings, etc.) which are minimally invasive but don’t necessarily require any experimental treatments that you have to participate in.  A study that I analyzed data for asked participants to use a breathalyzer and submit a fecal sample in a jar.  That’s all, and they were financially compensated for their time.  The study was trying to correlate microorganisms in the gut with how much hydrogen or methane was in the breath, and whether a breathalyzer test could be used as a rough measure of how many methanogenic archaea lived in your gut.  Often, research centers which are focused on medical treatment for a specific disease will collect specific biological samples.

Studies which require actual treatments or testing are clinical medical studies that rely on human volunteers upon whom to test products.  At a certain point in drug or vaccine testing, animal or computer models can no longer serve as a proxy and you need to test things in humans.  Thanks to HIPPA (Health Insurance Portability and Accountability Act of 1996) and other safety regulations, both at the federal and institutional level, there is a lot of transparency in these studies.  You are told exactly what you will be required to do, what data will be collected and who will have access to it, and any possible health concerns that may arise from this study.  Any release of tissue “ownership” will require you to sign consent.

I have participated in antibacterial product testing, a diet study investigating dairy fats during which I could only eat the prescribed diet for two solid months (boy, did I miss chocolate and Thai food!), and a study on chronic back pain (I was in the control group). For the back pain study, I had an EEG net put on my head to measure brainwaves and motion capture balls(examples below) attached all over my body to track my muscle movements as I performed simple tasks that required me to use my lower back muscles.  I even had a functional MRI brain scan to measure how muscle pain might change brain function, unfortunately, I was not able to get a photocopy of my brain scan for posterity.  The more invasive, time consuming, or risky a study may be, the higher the compensation (some vaccine studies compensate several thousand dollars).

Pay it forward

You can participate in science in other ways, too.  Try getting involved with science education!  There are workshops, summer programs, or school events which encourage kids to learn about science and consider a career in it.  Even if you aren’t a scientist yourself and can’t be a presenter, many programs still need people to chaperone, coordinate or market the event, and cater.  Many science museums and educational centers have programs, as do many colleges.  You can also find opportunities through local government to help clean natural sites or educate the public.

While you are out there collecting water samples from Arctic ice, counting wolves, or surveying land for public use, you are also perfectly situated to help with a little environmental restoration.  The Global Microplastics Initiative looks for plastic in water sources from some very remote locations, and this study wouldn’t have been conducted if plastic in the environment wasn’t a concern.  So while you are out there, try to leave the area a little cleaner than how you found it.  You can volunteer for clean-up events to target specific locations that need help, but you don’t even need to organize for this one, just go out and start picking up trash!

wp-1456094725093.jpeg
I took it upon myself to clean a stream near my house in Bozeman one day last year.

Finally, most agricultural research studies rely on farmers, ranchers, growers, and producers as a source of project resources (like seeds, land, or cows) and project motivation.  After all, federally and state-funded agricultural science exist to help local and national agriculture.  You can participate in science by identifying problems that need to be solved and providing objectives for our studies, or by allowing research projects to use your land, animals, or facilities.

So far, you’ve educated yourself on science, and now you can go out and participate.  Stay tuned in the next for weeks for Anyone can Science, Step 3: be supportive.

Plowing Forward: Montana Agriculture in a Changing Climate

Agriculture is consistently Montana’s largest economic sector, but as an arid state we need to prepare for the challenges brought on by changing weather patterns.  Yesterday, agricultural producers, scientists, special interest groups, lawmakers, and the general public came together at the Bozeman Public Library to talk about the future of climate change and what it means for people in the agricultural industry and research sector.  The event was organized by Plowing Forward, a collaborative group to coordinate local Ag. education efforts.

“If you’ve eaten today, then you’re involved in agriculture.”  -Chris Christiaens at the Plowing Forward meeting in Bozeman, MT, Feb 10, 2017

Opening remarks were led by Chris Christiaens, lobbyist and Project Specialist for the Montana Farmers Union, based in Great Falls, MT. Chris gave us some perspective on how Montana farming and ranching has changed over time, especially over the last 10 years,including changes to the growing season, harvest times, water usage, the types of plants which are able to survive here.  He reminded us that the effect of climate on agriculture affects all of us.

0210171341.jpg
Chris Christiaens, Project Specialist for Montana Farmers Union.

Next, we heard from Montana’s Senator Jon Tester, who runs a farm in northern Montana that has been in his family since 1912.  The Senator spoke to his personal experiences with farming and how his management practices had adapted over the years to deal with changing temperature and water conditions.  Importantly, he spoke about how agriculture is a central industry to the United States in ways that will become even more apparent in the coming years as the negative effects of climate change affect more and more areas.  Food security, a peaceful way of life, and economic vitality (not just in Montana or the United States, but globally), were contingent upon supporting agricultural production under adverse events.  He assured agricultural stakeholders that he continues to support production, research, and education, including the work we do in the laboratory as well as out in the field to promote agriculture.

0210171347.jpg
Montana Senator Jon Tester

Next, we heard from three professors from Montana State University.  Dr. Cathy Whitlock, a Professor of Earth Sciences, who is also the Director for the MSU Institute on Ecosystems, and a Lead Coordinator for the Montana Climate Assessment.  The Montana Climate Assessment seeks to assemble past and current research on Montana climate in order to assess trends, make predictions about the future, and help both researchers and producers to tailor their efforts based on what is happening at the regional level.  The Assessment is scheduled for release in August, 2017, and will allow for faster dissemination of research information online.

Dr. Whitlock’s introduction to the MCA was continued by  Dr. Bruce Maxwell, a Professor of Agroecology, as well as the Agriculture Sector Lead for the Montana Climate Assessment.  He summarized current research on the present water availability in Montana, as well as what we might see in the future.  He warned that drier summers were likely, and while winters may get wetter, if they continue to get warmer that snow runoff will flow into rivers before the ground has thawed.  This means snow melt will flow out of the region more quickly and not be added to local ground water sources for use here.  To paraphrase Bruce, a longer growing season does you no good if you don’t have any water.

0210171404.jpg
Dr. Bruce Maxwell, Montana State University

We also heard from my current post-doctoral advisor, Dr. Fabian Menalled, Professor of Weed Ecology Management and Cropland Weed Specialist (Extension).  He presented some of the results from our ongoing project at Fort Ellis on the interactions between climate change (hot and dry conditions), farm management system (conventional or organic), disease status, and weed competition on wheat production.  Increased temperatures and decreased moisture reduced wheat production but increased the amount of cheatgrass (downy brome), a weed which competes with wheat and can reduce wheat growth.  My work on the soil bacterial diversity under these conditions didn’t make it into the final presentation, though.  I have only just begun the data analysis, which will take me several months due to the complexity of our treatments, but here is a teaser: we know very little about soil bacteria, and the effects we are seeing are not exactly what we predicted!

Here is the video of Dr. Menalled’s presentation (just under 9 minutes):

Lastly, we heard from a local producer who spoke to his experience with ranching on a farm that had been run continuously for well over 100 years.  His talk reflected the prevailing sentiment of the presentations: that farm practices had changed over the last few decades and people in agriculture were already responding to climate change, even if previously they wouldn’t put a name to it.  The presentations concluded with a question and answer session with the entire panel, as well as a reminder that we all have the right and the obligation to be invested in our food system.  Whether we grow produce or raise livestock for ourselves or others, whether we research these biological interactions, whether we set the policy that affects an entire industry, or whether we are just a consumer, we owe it to ourselves to get involved and make sure our voice is heard.  To that end, I wrote a letter to my legislators (pictured below), and in the next few weeks I’ll be writing posts about how I participate in science (and agriculture) on the local and national level.

0210171504
Make your voice heard.

Anyone can Science, step 1: get your education on

Co-written by Dr. Irene Grimberg, Affiliate Associate Research Professor at Montana State University.


Science may seem like an exclusive club, what with the complicated technical jargon, quirky inside jokes that only seem funny to science people, daunting entrance and exit exams, and years of study and self-improvement.  And it doesn’t help that many scientists would rather hole up in their lab than give a public presentation or figure that “social media thing” out.  But we scientists get coffee stains on our lab coats and use spell-check just like everyone else.  And as with ice cream, science comes in a tremendous variety of flavors and sizes of commitment.  So, let’s talk about some ways that you can involved today!

Education

Getting acquainted with the vast field of science seems daunting, but it’s actually easy and fun.  There are hundreds of museums out there that are eagerly waiting to broaden your perspective on science, technology, engineering, and mathematics (STEM), and will let you give it a try with hands-on activities.  Wikipedia has conveniently made some lists on science museums in the US and around the world.  In fact, there are organizations like the American Alliance of Museums and the Association of Science-Technology Centers that can help to get you connected to the museum that catches your eye.  Many US National Parks also have strong science education programs and information in the visitor centers or around the park (at least, as of January 19th, 2017 they did).

All colleges and universities host daily talks (seminars) on current research and they are open to the public, they just aren’t advertised widely in local media.  If you search online for your local university and “seminar”, you can find public presentations for nearly every department or subject, not just the STEM ones.  Some presentations are available as webinars and can be found online to watch remotely in real-time so that you can ask questions, or can be replayed later at your leisure.  There are many outreach STEM programs sponsored by non-profit organizations, sometimes in collaboration with universities.  For example, Farm Days or Field Days are public presentations at university research facilities on issues related to local and national agriculture, food production, and food safety.  In fact, most university farms and greenhouses are open to the public and offer free tours and other events on a regular basis.  There are also “ask an expert” shows on local public radio and TV in which viewers can call in and ask questions to university researchers.  Or you can simply email your questions and get connected to someone in a relevant field.  Even NASA has a program in which you can ask questions to an astrophysicist!

Other educational options include science festivals, robotic competitions and shows, Science Olympiads, The National Chemistry Week, and programs that specifically aim to recruit girls to science, such as Expanding Your Horizons and Girls for a Change.  As an undergraduate at the University of Vermont, I participated in a service-learning course in spring of 2008 in which we designed a public presentation at the ECHO Center in Burlington, VT.  The purpose of the all-day workshop was to educate kids and adults on wolf ecology and potential reintroduction into New England.  Our Wolfwise presentation was incredibly fun to host, and it was a huge hit: we were invited to come back and present again the next weekend!

 

If leaving the house isn’t your thing, there are an overwhelming amount of resources available online.  An increasing number of scientific and research journals are available free of charge online, known as open access.  Over 26 million journal articles are available through PubMed, a database for medically-relevant research studies which is curated by the National Center for Biotechnology Information (NCBI).  Science News hosts a huge variety of STEM articles compiled from the most prestigious science journals, as well.  And any subject under the sun (or inside the sun) has an educational video out there somewhere.  There are science shows on TV, a dedicated cable channel, and documentaries including several outstanding educational series with high-definition video footage from around the globe (Plant Earth, Life, and The Blue Planet).  There are podcasts, such as Science, Star Talk Radio, and many others that allow you to listen to recorded audio shows on your own time.  You can find interactive websites to learn a variety of things, both academic and practical.  Or teach yourself computer coding in C++, Java, Ruby, Python, or Perl.

Just be sure that you are getting your information from a credible source.  Many online bloggers or websites sound great, but they often have no formal training in what they peddle, or are heavily sponsored by companies to promote an unsubstantiated lifestyle or discredit scientific work.  A good rule of thumb is to look for qualifications, citations, and motivations.  Does this person or organization have formal education or training?  Do they cite their sources for information?  And what is their reason for doing this?  Here are my qualifications, you’ve seen how much I enjoy citing sources, and since I am (and have always been thus far) federally-funded through different grants, I consider it part of my job to share my work and my experiences free of charge.

Featured Image Source.

Conference Proceedings

Scientific conferences are a great place to get your name out there, discuss research with colleagues, and meet other researchers with whom you might one day collaborate.  It can be difficult to get noticed as a graduate student or post-doctoral researcher, especially if it’s your first time at a certain conference, if your poster time conflicts with more interesting events, or if you find yourself way at the back of a 1,000 poster hall.  You need to be ready to introduce yourself and get your point across, and to do it in a memorable and concise way.  There may be hundreds or even thousands of people in attendance, so you need to make a fast impression.

0531161802.jpg
Too much info on your card? A black background is slimming.

Though a bit outdated these days, I find business cards really handy.  Not only can you quickly hand out all your information, but you can write notes on the back about what you discussed with someone so you can follow up with them later.  It’s easy to leave a bag of them at your poster for people to take, too.

Not only is your poster or presentation’s content important, its visual appeal will help draw in people who are “browsing”.  Make sure your font is large enough to read from 5-8 ft away, and that you have some color, but not enough to make text illegible.  Bolding or bulleting take-home messages can also be really helpful.  Make sure you can describe your poster in a variety of ways: in under 60 seconds to the person with a mild passing interest, and in-depth with the person that is curious about your methods or your other projects.

The most important thing to prepare, though, is yourself.  You are representing yourself, your institution, and your science.  Cleanliness, organization, and confidence make a huge difference when meeting new people, and will make you more approachable.  Make eye contact, try to avoid filler words, and smile!  I have watched posters get overwhelmingly passed by because the presenter was on their phone, or looked bored or annoyed.  Making eye contact and saying hello to someone as they walk by is often enough to get them to slow down and ask you about your work.

JAM 2015 poster
If nothing else, a brightly colored shirt will attract attention to you and your poster.

When asking questions at other presentations, be sure to be polite; being demanding or rude is guaranteed to be met with disapproval from the rest of the audience.  And go ahead and introduce yourself to other researchers, just be sure to keep it brief and don’t interrupt another meeting.

One more thing to consider at a conference is your behavior outside of your presentation.  You are at a gathering of intellectuals who may one day be your boss, your colleague, your grant reviewer, or otherwise influential in your career.  They may remember that they saw you talking loudly to a friend during a presentation, or that you got too drunk at the opening session.  Conferences are often used as an excuse to take a concurrent vacation, especially for those in academia who generally can’t take a week off during the semester.  But you should remember why you are there and act professionally, especially as a graduate student or post-doc, because you never know who’ll remember you in the future.

I Accepted a New Position in Soil Microbiology and Agroeconomy!

As my current post-doctoral position winds down in the Yeoman Lab in the Department of Animal and Range Sciences, I am pleased to announce that I have accepted a post-doctoral position in the Menalled Lab in the Land Resources and Environmental Sciences Department! Dr. Menalled’s work focuses on agricultural weed ecology and management, particularly with respect to plant-plant interactions, changing climate (water and temperature changes), and now plant-microbe interactions!

I’ll primarily be working on a new two-year project that recently got funded through the USDA, entitled “Assessing the vulnerability and resiliency of integrated crop-livestock organic systems in water-limited environments under current and predicted climate scenarios”, but I’ll also be working collaboratively on several other similar projects in the lab.

chop saw sue.jpg
A little pre-job job training: I’m helping to make structures to keep rain out (rain-out shelters) of plots to simulate drier climate conditions.  Photo: Tim Seipel

My new responsibilities will include comparing agronomic performance and weed-crop-pathogen interactions between organic-tilled and organic-grazed systems, evaluating the impact of management and biophysical variables on soil microbial communities, and collaborating in modeling the long-term consequences of these interactions under current and predicted climate scenarios.  It’ll mean a lot more field work, and a lot of new skills to learn!  In fact, to help me study for my new job working with agricultural plants, my mentee and her friend made me flash cards:

study cards.jpg
My mentee made my study cards so I could learn to identify common crop and weed species.

In addition to my new skills, I’ll be integrating my background in microbial ecology and bioinformatics, in order to study agricultural ecosystems more holistically and measure plant-microbe interactions.  In the same way that humans eat probiotics to promote a healthy gut microbiome, plants foster good relationships with specific soil microorganisms. The most exciting part is that I will act as an interdisciplinary bridge between the agroecology of the Menalled lab and the microbial ecology of the Yeoman lab, which will allow for more effective collaborations!

 

 

Improving a child’s life is as easy as wearing a paper turkey-hat.

Encouraging girls to go into STEM fields is really important; studies show that female STEM high-school teachers and even online mentors increase the probability of female students following a STEM education.  Moreover, any child benefits academically and psychologically from having positive role models in their life, especially when they were role models that they interacted with as opposed to celebrity role models.  And the benefits don’t just extend to children, adults benefit from positive role models, too.  Certainly I have benefited from strong female role models in my life, from high school art teachers, to undergraduate lecturers, to family (happy birthday, Mom!).

This past fall I started putting my money where my mouth was- I started mentoring an elementary school-aged girl in Bozeman, MT through the Thrive Child Advancement Project (CAP).  So far, we have mostly been making art projects and talking about archaeology.  But we have been talking about trying to learn the Java programming language together!

There are lots of opportunities to mentor kids, either through CAP programs, Big Brother/Big Sister, Girls and Boy Scouts, etc., just a quick internet search brings up dozens of local options.  For less of a time commitment, you can also volunteer for community workshops, like the Girls for a Change summit in Bozeman or the Girls-n-Science in Billings.

This slideshow requires JavaScript.

Citizen Science- volunteering for the microplastics study

11987012_10102332796628720_4685488031679567780_n
Sampling in September, when the stream wasn’t frozen and we could see the trail. Credit: Lee Warren

Yesterday was the winter sampling time point for a large research project I’m volunteering for: Adventurers and Scientists for Conservation is managing sample collection for the ASC Gallatin Microplastics Initiative in the Gallatin Valley watershed. The project samples various streams and lakes, both where they converge with the Gallatin River and at their headwaters.  The project is part of a much larger project looking at microplastics in water around the world, the ASC Worldwide Microplastics Initiative.  ASC recruits volunteers who have the outdoors-man skills (like hiking, tracking, or boating) and enthusiasm to get to hard to reach places to collect samples, then trains them in how to collect water samples and metadata (like weather, temperature, what we’re wearing during collection), coordinates sample collection times, and makes sure to safely send the samples back to a laboratory in Maine.

 

IMG_0554
A lovely view of the Spanish Peaks.

Lee and I sample Deer Creek, just north of Big Sky, Montana.  To do this, we hike 13 miles round trip to Moon Lake, with a 3,288 foot elevation gain up to around 9,000 ft above sea level. This time, the trail was covered in 1-2 feet of undisturbed snow, luckily we had snowshoes that kept us from sinking into all but the most soft of snowdrifts. On the way up it was snowing heavily, though visibility was fine, and on the way down it was raining. In many areas of the trail, drifts meant that the trail was at a 45 degree angle, and we had to break our own trail for nearly all of it. Despite the arduous trek, the views were beautiful, it was wonderful to be out of the office, and it was fun helping a large coordinated study.  You can get involved in studies like this through organizations like ASC, or through research universities- volunteers are always needed for all different types of studies.

IMG_0557
Moon Lake…so where do we start digging?

Not in my backyard!

image

Today I spent a few hours picking trash out of some steams bordering my housing development. It’s very windy on the plains of Montana, and wind storms contribute to pollution by spreading trash. These steams are home to ducks, fish, musk rats, snakes, and frogs, and they link to larger water systems which run through local farms and provide water to cattle. Since the water table isn’t very deep here, any pollution can have far reaching effects. In just two and a half hours, I managed to pull all this out using only a ski pole, proving that one person can make a difference. As an environmental scientist, it’s important to me to give back. Next time you’re looking for something to do, why not try some green up?