First first-authorship paper accepted for Olivia Choi from the Kamath Lab!

Olivia Choi, a doctoral candidate in the Kamath lab at the University of Maine, has had her first scientific paper accepted for which she is the first author – a position indicative of the amount of work and organization that she put into developing this work and wrangling the large research team involved. Olivia’s graduate work is winding down as she concentrates on writing up papers and her dissertation, and she is planning on defending her PhD and looking for a postdoc in 2022 in wild animal microbiomes and ecology.

Olivia brought this 16S rRNA dataset to use in my AVS590 data analysis class back in spring 2020, of bacterial communities in different locations on birds of different species, which had been sampled as part of her dissertation work on bird migration and range changes, microbial carriage, and risk of transmission of microbes to other animals. I mentored her through analysis and preliminary manuscript writing as part of that course. The research team generously invited me to join the author team, and I continued to provide mentorship as Olivia worked through the complex task of melding various types of microbiology data.


Choi, O., Corl, A., Lublin, A., Ishaq, S.L., Charter, M., Pekarsky, S., Thie, N., Tsalyuk, M., Turmejan, S., Wolfenden, A., Bowie, R.C.K., Nathan, R., Getz, W.M., Kamath, P.L. 2021. High-throughput sequencing for examining Salmonella prevalence and pathogen – microbiota relationships in barn swallows. Frontiers in Ecology and Evolution 9:681.

Abstract:

Studies in both humans and model organisms suggest that the microbiome may play a significant role in host health, including digestion and immune function. Microbiota can offer protection from exogenous pathogens through colonization resistance, but microbial dysbiosis in the gastrointestinal tract can decrease resistance and is associated with pathogenesis. Little is known about the effects of potential pathogens, such as Salmonella, on the microbiome in wildlife, which are known to play an important role in disease transmission. Recent studies have expanded the traditional use of 16S rRNA gene amplicon data from high-level characterization of host-associated microbial communities (i.e., the microbiome) to detection of specific bacteria. Few studies, however, have evaluated the ability of high-throughput 16S rRNA gene sequencing data to detect potential bacterial pathogens in comparison with laboratory culture-based methods. To address this knowledge gap, we evaluated the utility of 16S rRNA gene sequencing for potential pathogen detection and explored the relationship between potential pathogens and microbiota. First, we compared the detection of Salmonella spp. in barn swallows (Hirundo rustica) using 16S rRNA data with standard culture techniques. Second, we examined the prevalence of Salmonella using 16S rRNA data and examined the relationship between Salmonella presence or absence and individual host factors. Lastly, we evaluated host-associated bacterial diversity and community composition in Salmonella present versus absent birds. Out of 108 samples, we detected Salmonella in 6 (5.6%), 25 (23.1%), and 3 (2.8%) samples based on culture, unrarefied 16S rRNA gene sequencing data, and both techniques, respectively. In addition, we found that Salmonella presence and absence differed between birds based on migratory status and weight and that bacterial community composition and diversity differed between Salmonella present versus absent birds, with eleven bacterial taxa differentially abundant between the two groups. The results of this study highlight the value of high-throughput 16S rRNA gene sequencing data for bacterial pathogen detection and for examining relationships between potential pathogens and host-associated microbial communities. Further, this study emphasizes an approach using 16S rRNA gene sequencing data for simultaneously monitoring multiple pathogens in wild avian reservoirs, which is important for prediction and mitigation of disease spillover into livestock and humans. 

This work was presented at a recent scientific conference:

Choi*, O.N., Corl, A., Wolfenden, A., Lublin, A., Ishaq, S.L., Turjeman, S., Getz, W.M., Nathan, R., Bowie, R.C.K., Kamath, P.L. “High-throughput sequencing for examining Salmonella prevalence and pathogen -microbiota relationships in barn swallows.”  69th Annual – 14th Biennial Joint Conference of the Wildlife Disease Association & European Wildlife Disease Association. (virtual). Aug 31 – Sept 2, 2021.

Illustrated image of a cross section of the ground. A light brown ant is pictured in the ground along with a microbe. Text to the left of the image reads, "Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?". The names of six professors are listed below the text and image at the bottom left. In the bottom right corner, text reads, "The University of Maine" with "The University of Arizona" below it.

Paper published on bacterial transfer in insects and possible ecological impacts.

A collaborative paper on bacterial transfer in insects and the possible ecological impacts of that in the wild has been published in iScience! This work began a decade ago in the labs of Dr. Ellie Groden, recently retired Professor of Entomology in the School of Biology and Ecology at the University of Maine, and later Dr. Patricia Stock, a Professor in the School of Animal and Comparative Biomedical Sciences at the University of Arizona, who were investigating colony collapse of European fire ants (Myrmica rubra) which are invasive to Maine. The ants have a nasty bite, and can dramatically disturb the local plant and insect wildlife in coastal Maine.

Slide from Ishaq et al. Entomology 2020 presentation

When these invasive ant colonies collapsed, Drs. Groden and Stock wanted to find out why, as a possible means of developing a biological control strategy. It was thought that particular nematodes would ingest soil bacteria, and transfer it to ants once the worms invaded ant tissues to complete parts of their life cycle. This particular worm infection doesn’t kill the ants, but perhaps the soil bacteria were. Ants were collected from different colony sites, and investigations on the nematode worms inhabiting the ants were conducted.

Slide from Ishaq et al. Entomology 2020 presentation

Most of the work for this project was completed several years ago, with the exception of DNA sequencing data from a bacterial transfer experiment. I was added to the project by my collaborator at UMaine, Dr. Jean MacRae, an Associate Professor in the Department of Civil and Environmental Engineering who introduced me to the research team and shared the 16S rRNA dataset to use in my AVS 590 data analysis class in spring 2020. That semester was when the pandemic hit, and forced the course to move to remote-only instruction in March. UMaine graduate students Alice Hotopp and Sam Silverbrand were taking the class and learning 16S analysis on this dataset, and I mentored them through the analysis all the way to manuscript writing despite the incredible challenges that spring threw our way.

At the completion of the course, we shared the draft manuscript with the rest of the research team, who mentioned that several undergraduate honor’s theses had been written about the earlier experiment, but never published in a scientific journal. The team spent summer 2020 combining the three papers into one massive draft. The pandemic slowed down manuscript review, understandably, but I’m pleased to say that it was accepted for publication! In addition, this collaboration has led to further collaborations in the Ishaq Lab, several presentations (listed below), and is Sam’s first scientific publication, congrats Sam!!

Related Presentations

Alice Hotopp, A., Samantha Silverbrand, Suzanne L. Ishaq, Jean MacRae, S. Patricia Stock, Eleanor Groden. “Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?Ecological Society of America 2021 (virtual). Aug 2-6, 2021 (accepted poster).

Ishaq*, S.L., Hotopp, A., Silverbrand, S.,   MacRae, J.,  Stock, S.P.,  Groden, E. “Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?” Entomological Society of America 2020 (virtual). Nov 15-25, 2020. (invited talk)

Illustrated image of a cross section of the ground. A light brown ant is pictured in the ground along with a microbe. Text to the left of the image reads, "Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?". The names of six professors are listed below the text and image at the bottom left. In the bottom right corner, text reads, "The University of Maine" with "The University of Arizona" below it.

IshaqS.L., A. Hotopp2, S. Silverbrand2, J.E. Dumont, A. Michaud, J. MacRae, S. P. Stock, E. Groden. 2021. Bacterial transfer from Pristionchus entomophagus nematodes to the invasive ant Myrmica rubra and the potential for colony mortality in coastal MaineiScience. In press. Impact 5.08.

Abstract

The necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States, and may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. Paenibacillus and several other bacterial species were found in the digestive tracts of nematodes harvested from collapsed ant colonies. Serratia marcescens, Serratia nematodiphila, and Pseudomonas fluorescens were collected from the hemolymph of nematode-infected wax moth (Galleria mellonella) larvae.

Virulence against waxworms varied by site of origin of the nematodes. In adult nematodes, bacteria were highly concentrated in the digestive tract with none observed on the cuticle. In contrast juveniles had more on the cuticle than in the digestive tract. .  Host species was the primary factor affecting bacterial community profiles, but Spiroplasma sp. and Serratia marcescens sequences were shared across ants, nematodes, and nematode-exposed G. mellonella larvae. 

Tindall won first prize in a graduate students poster competition!

Congratulations to Tindal Ouverson for winning first prize in the graduate students poster competition at the 2021 Montana State University LRES research colloquium!

Tindall is a master’s of science in Land Resources and Environmental Sciences at Montana State University, working with advisers Drs. Fabian Menalled and Tim Seipel. Tindall and I have been working closely over the past three-ish years on soil microbiomes, and she is preparing to defend her thesis this May.

Check out her recently published paper: Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains. 

Johanna Holman is awarded UMaine Grad Student Employee of the Year!

Johanna Holman, Master’s of Nutrition student in the Ishaq Lab has been awarded the 2020-2021 University of Maine Graduate Student Employee of the Year!!!!

I met Johanna in the fall of 2019, when I was just establishing myself as a new Assistant Professor in the School of Food and Agriculture, and she was looking for an advisor for a graduate degree.  Right away, she impressed me with her background and enthusiasm for research.  I learned that Johanna began her undergraduate study as an art student before transitioning fluidly to science.  I see this is an asset – the ability to design visual aid and graphical representations of data is hugely important to science and sadly, not always a skill that scientists are trained to do. Johanna also had a number of service industry jobs, and initially in that first meeting, she was somewhat apologetic for not having been devoted to science jobs from the start.  I countered that I was pleased to see that she has worked in other industries, specifically in difficult service-related jobs.  It is often more important to have patience, dedication, and strong interpersonal skills, such as those gained by working in customer-facing jobs.  I believe that Johanna has and will continue to succeed because of her varied education and experience.

Once she became a science student during her undergraduate study, she worked in the laboratories of Drs. Yanyan Li, Associate Professor (of nutrition) in the College of Science and Humanities, and Tao Zhang, Assistant Professor of Basic Pharmaceutical Sciences, both of Husson University in Bangor.  There, she has performed nutritional biochemistry, worked with mouse models, and developed an idea of what she wanted to study in graduate school and pursue as a career. 

Johanna officially joined my lab and started as a Master’s Student of Nutrition at UMaine in fall 2020, and immediately got to work.  Not only did she begin preparations for the massive undertaking that is part of her project, but she began mentoring several undergraduates on and off campus, and started as a first time teaching assistant for the Chemistry department, which required navigating virtual labs.

Johanna’s project focuses on whether consumption of specific broccoli sprout preparations will elicit changes in the gut microbiota, to the effect of improving the production of microbiota-specific bioactives that have local anti-inflammatory effects, and promoting intestinal homeostasis by reducing dysbiosis. This project is a continuation of previous research on bioactive compounds in broccoli, completed in the labs of Drs. Yanyan Li and Tao Zhang at Husson University in Bangor.  While some of the work may be similar, the skill set is entirely new.  For the winter break, Johanna was managing a 40-mouse study for 5 weeks, which has resulted in hundreds of samples collected, hundreds of data time points, and enough follow-up laboratory and analysis work to keep her occupied for an entire year.  She has learned how to culture bacteria in an anaerobic chamber, which is a notoriously fussy machine that requires regular attention, as well as to grow them under different conditions for biochemical analysis and enzyme activity.  She will be learning DNA extraction, DNA sequencing library preparation, DNA sequence analysis, and will lead the generation of a large manuscript on the results.

It might seem too early to recommend a graduate student for this award after just one semester, but it is remarkable that a new master’s student could achieve all of this in their first semester during a pandemic.  I have informally mentored graduate and undergraduate students for years, and it is easy to spot the ones who will go far in science. Johanna has a highly successful career ahead of her, and I am honored to be one stop on that path.  This award will not only acknowledge the incredible amount of work she has accomplished, but it will support an early career researcher who has every quality to make research a hospitable and collaborate place.

Tindall’s first paper was accepted!

I’m pleased to announce that master’s student Tindall Ouverson’s first manuscript was accepted for publication!

Photo of woman in front of mountains

Tindall is a Master’s of Science in the Department of Land Resources and Environmental Sciences at Montana State University. Her graduate advisers are Drs. Fabian Menalled and Tim Seipel. Her research focuses on the response of soil microbial communities to cropping systems and climate change in semiarid agriculture. 

I have been mentoring Tindall as a graduate committee member since she began in fall 2019, teaching her laboratory and analytical skills in microbial ecology, DNA sequencing, and bioinformatic analysis. We first met when she came to visit when I was working in Oregon, and since then have connected remotely. She has a flair for bioinformatics analysis, and a passion for sustainable agricultural development. She plans to defend her thesis in 2021, and then to further her career in sustainable agriculture in Montana.


Tindall Ouverson, Jed Eberly, Tim Seipel, Fabian D. Menalled, Suzanne L. Ishaq. 2021. Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains.  Frontiers in Sustainable Food Systems.  Article. Invited submission to Plant Growth-Promoting Microorganisms for Sustainable Agricultural Production  special collection.

Abstract

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a five-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.

How to choose a graduate program in STEM

I frequently receive requests for advice on choosing graduate programs, or to work in my lab, and have conversations with graduates who are struggling with program, department, or university policies which they were not aware of when they began. I decided to put those thoughts and conversations in one place, to create a non-exhaustive list of advice and considerations for choosing a graduate program. This will mostly be applicable to STEM programs, but some aspects will be universal.

Some of this will be discouraging, because graduate school is not a thing to be entered into lightly. But, I also believe that anyone can participate in science, and that many times when people think they couldn’t succeed in science, it’s not because they aren’t good enough, it’s more of a problem with an environment that selects for just one type of researcher.

Define your goal.

What do you want to do with your career and why do you need to go to graduate school to accomplish this?

I spend more time talking people out of graduate school, or into a lesser commitment, than I spend convincing people to go to graduate school, because there is an inflated sense of the need and prestige of having a graduate degree. And, many people assume they need a degree, or the highest degree available, to get the job they want.

When I was in 6th grade, I decided I was going to be a veterinarian because I wanted to help animals, and I refused to consider other career paths which felt like a lesser calling. Three weeks into my undergraduate degree in animal science, I realized that the reality of being a veterinarian is very different from its portrayal, and it wasn’t what I wanted at all. I had only thought I wanted it because I had gotten a very limited exposure to career choices prior to going to college. I see the same mistake with people considering, or in, graduate school. I don’t mean to disparage having a veterinary or graduate degree, I just mean that the way they are portrayed to prospective students is not always accurate. Do your homework before committing to those career paths.

More than that, when you receive career advice or look into career paths, the advice tends to focus on the highlights or major types of jobs and ignore the nuance of interdisciplinary or support-level careers. Not only does this mean that everyone in animal science thinks they can only be a veterinarian or a professor to be in the field, but the way that careers are portrayed makes students think that the only suitable use of their time, and justification for massive financial burden of higher education they incur, is to go for the career with the highest prestige – whether they want that or not. Unfortunately, when students realize they don’t have the grades and the accolades to make it into the career with the most prestige, which also has the most strict entry requirements, it means students are more likely to give up entirely, consider leaving their degree unfinished, and feel guilt or shame for having failed. But here’s something no one tells you up front: choosing a different job doesn’t mean you failed to be the boss, it means you chose a different job. A veterinary technician isn’t a failed veterinarian, and a laboratory technician isn’t a failed researcher, they are performing different functions in a setting which requires collaboration from various job types.

So, I’ll ask you again, like I ask all prospective graduate students: what do you want do with your life, and do you need graduate school to get you there? This question helps you focus on creating stepwise objectives to meet your goals. Maybe you need a specific degree, or a degree in a specific field, or don’t actually need a degree at all, maybe you need an internship or professional training, and those might require a specific order to the events. Do you want to travel for work or not? Do you want to have clear definition of your job responsibilities, or the flexibility to determine your own to-do list? Do you want to be at the bench, in the field, or at the keyboard and to be doing the research, or do you want to be writing proposals and papers, and administrating the research and the lab personnel? And, do you actually want to work alone or are you alright in a social environment? Spoiler alert, most jobs in science actually require daily socialization, communication, and presentation.

All of these aspects will determine the particulars of what you need out of a graduate program and the type of degree you get. It’ll also help you in the future when you need to decide if you have met your grad school goal and are ready to move to the next phase of your life.

You can probably outline your personal goals and constraints, but defining your professional goals will take some homework. I’ve previously described the academic ladder, with descriptions of responsibilities of students, post-doctoral researchers, adjuncts and researchers, and tenure-track faculty. I have also compiled some “science journeys” into a video. Professional research blogs can be a good way to learn about life in academia, although keep in mind many labs only post about their successes and not about their failures. You can also connect with faculty on campus, and most labs will take on undergraduate (or even high school) students to participate in research. If you aren’t sure if you would be interested in research, you can ask to shadow researchers in the lab, attend a few lab meetings, or otherwise participate in a voluntary and commitment-free capacity. There are also plenty of research opportunities off campus, as well.

Volunteering for Adventurers and Conservationists for Science, collecting water samples to look for microplastics. Photo: Lee Warren.

Define your limits.

Graduate programs can be demanding, and you may need to relocate to find the topic, project, and mentor who is right for you. Before you start applying everywhere and racking up application fees, think about your constraints, your limits, and what would be a “deal-breaker” for you. Defining your limits (especially if you have a lot of them) will feel like you are writing yourself out of the possibility of finding a graduate program that works for you. In reality, it will help you find an institution that matches your life better and will help you focus on what is really important to you. You don’t have to erase all other aspects of your life in order to be a scientist.

Often, you feel pressured to give up everything to go to graduate school or other professional degree programs. The perception is that because there are fewer available positions than applicants that you need to underbid everyone else and give up everything, essentially that you need to recruit the graduate program. You assume you have to relocate and out of your own pocket, you need to put family on hold, you need give up job benefits, and you will have to work all the time.

I’ve moved over 7,000 miles for academic jobs.

Some of that may be true, and you should think about what you are able to manage and what you can’t live without. Some of that is just perception cast by work-a-holic culture and you will be able to reject or negotiate aspects. Think of your list of limits as conditions your employer might need to meet in order to convince you to take the position.

Narrow down your interests.

What do you want to do day after day, failure after failure?

If you start to make a list of things you are interested in science and you start writing down all the cool things you saw on social media – stop right there. Science is cool, but most of the time is cool in retrospect after the work has been completed and narrative added in. Science is arduous, iterative, and requires a lot of process improvement and reflection, and that takes time and focus. You need to be able to work on the same thing day after day and maintain interest even if everything you do seems to fail everyday. Especially when you are trying to develop technical skills and analytical skills, you need to be able to focus and dive deep into your topic, and you can’t be distracted by every little thing you think is cool, otherwise you will never get anything done.

You don’t need to commit to your research interest for life, and you don’t need to have an incredibly narrow scope to your interests, but you should be able to identify a common theme or the aspect that draws you in. Which topic makes you ask “yes, and?” over and over. What cool science story made you look for a second similar story, and then a third?

Search for a program.

There are a few different types of graduate degrees available, and each have nuances about the requirements to get in, requirements to graduate, cost to you, salary and benefits to you, and approach for application and acceptance into the program. I recommend looking into programs first, to find a location and institution that best meets your personal and professional goals and limits, and then trying to find a mentor. Don’t underestimate the importance of geographic location, and the environmental and social climate you will find there. You might need to be close to family, or find a location with a job or program for a partner. And if you are used to sun, several years of overcast winters might lose their novelty.

Most people apply to multiple programs and it can take time to find the right match. If you end up applying to multiple programs at a single institution, you can ask them to waive additional application fees, something that is commonly done but not commonly advertised.

Masters of Professional Studies are designed to give you familiarity with research and build skills. MPS is not thesis-based and requires research participation but not your own research project, so it is often used for people who will be in research-adjacent jobs. Students are admitted to programs based on their GPA, exam, or other numeric qualifications, and during their first semester have to identify a research mentor and two other committee members to guide their curricula and career development. MPS students pay for their own tuition, and most program/university policies stipulate that they are not allowed salary for their research, although they usually can be paid summer research salary. MPS students are eligible for teaching assistantships, but few, if any research assistantships. Because you are categorized as students and not employees, you do not receive health insurance or other fringe benefits, but you are eligible for student health insurance plans. MPS are completed in 2 years, but can be completed over longer periods of time to accommodate working professionals.

Master of Science programs are thesis-based, and require research study in a project you co-lead. Applications may be accepted year-round or according to deadlines, depending on the program. Master’s programs are designed to last 2 -3 years (credit hour requirements make it almost impossible to accomplish in fewer than two years), and beware mentors or projects which assign you a PhD-level amount of work to accomplish in just two years. Finding funding for master’s programs can be tricky, as many universities prioritize PhD students in order to boost their Carnegie research rating, but master’s programs are needed for training the majoring of the research workforce. Typically, you are paid a salary for your master’s, including partial coverage of your health insurance, and full coverage of your tuition. Most programs do not cover full health insurance, or semester fees, both of which can cost a thousand dollars of more in each of the spring and fall semesters, but you might be able to negotiate these to be paid by your advisor. You are considered both a student and an employee, but most university policies make graduate students ineligible for university-based or even individual-based pre-tax retirement savings programs for employees, although you can configure a post-tax retirement savings plan on your own.

Doctorate of Science programs are dissertation-based and requires that you (more or less) lead a research study and have contributed significantly to the theory behind its design, or theory behind its analysis and interpretation. PhD programs are designed to take about 5 years in the US (3 years in many other countries which don’t require coursework). Credit hour requirements make it almost impossible to accomplish in fewer than 4 years in the US, and PhD time can vary between 4 – 9 years, depending on the research and other circumstances. Applications are accepted year-round for direct-to-lab admissions (see below), and once or twice a year to be considered for lab-rotation-based fellowships.

Thesis-based science programs have two paths to admission, which is not always common knowledge. You will always have to apply to the graduate college of a university and meet the qualifications set by the university, as well as the program/department. After passing initial qualification checks, the graduate school will forward applications to the department to review, and it is this step that offers two paths.

If graduate programs have a collective fund to support students (teaching or research assistantships), they might accept a certain number of students as a cohort based on their qualifications. The top number of applicants will have some sort of recruitment event in which you are shown the facilities, have a chance to talk to students and faculty, and are interviewed by the program admission committee. Applicants who are admitted as a cohort have salary provided for the first 1 – 2 years as they take classes and rotate through different research labs. At the end of rotations, you match with a lab that has money to continue funding your salary and your research. Most programs will not accept so many students to the cohort that they will be unable to find them funding to continue their graduate work.

However, because thesis-based study is a funded position, you might apply to a department as a “direct admission”. This means that you have already matched with an advisor during prior conversations, the advisor has already looked through your application, and that the advisor and the department have informally agreed to offer you a position. But, this method is entirely dependent on that advisor having funding to pay your salary, tuition, and your research costs. You need to start the conversation with a possible mentor 6 months or more before you want to begin, unless you are applying to an advertised position in their lab. Finding research funding takes 6 – 18 months because of the slow pace of federal funding review and allocation, so if your advisor needs to find funding it will take planing ahead of time. Direct admission can happen on a rolling basis, but you will still need to apply to, and meet the qualifications of, the graduate college. Because of the unpredictable nature of the funding, you can defer a direct admission offer for a year, as needed.

Interviewing and searching for a mentor.

Whether you are applying as part of a cohort or a direct admission, you will have some sort of interview. It might be a series of informal conversations with potential advisors, or a formal interview with a program admission committee. When you are going into a graduate program interview, it feels daunting, and it’s not until you advance your career enough to be on the interviewer side that you realize it is supposed to be a conversation and not a test.

The graduate interview is not really about proving your qualifications because you have already met that hurdle with your application. The interview is to match students to mentors, and to confirm your interest in research. By having conversations and interacting in real time (whether in person or via electronic chat), interviewers can assess your communication skills, and get a better idea of your goals and interests.

The graduate advising relationship is quite different from what you might have experienced with previous instructors or undergraduate advisors, so it’s important that your personal and professional goals line up with those of your advisor. It really helps if you actually get along. You’ll be working together for several years during your degree, and will maintain a mentoring relationship for a good portion of your early career after you graduate. As a member of their lab, you’ll be performing a lot of their research and representing them at conferences and other venues during presentations, collaborations, or future work. It’s important to your career and theirs that you are able to work well together.

Therefore, during your grad school interviews you should remember that you are interviewing them, as well. The interview is an opportunity for your future advisor and institution to impress you and convince you to take a position with them. This is your chance to ask them about the projects you might be doing, where former lab members are now, their expectations of you, and more. Many federal funding proposals require a detailed mentoring plan, so advisors already have an idea what your professional development might look like. Importantly, get an idea about the lab culture. Some advisors feel you should work nights and weekends and during all breaks, others feel that your contributions belong to the lab and you might not have as much access to your own intellectual property than you think. And, not every lab has made a commitment to equity and inclusion. Here’s the policy for the Ishaq Lab.

It’s also a great time to ask grad program coordinators about university policy, departmental expectations, and financial support opportunities which might affect you. Does the program provide some or all financial support for health insurance, tuition, salary, and student fees? If not, what opportunities are in place to secure these? Are you able to switch mentors if there is a professional or personal mismatch? Is childcare available for graduate students? What about time off for maternity leave, and is this paid or unpaid? Family or medical leave? What if you need to take a semester or a year off, can you get back into the program and would you lose your funding? How many papers will you need to publish, or scientific presentations to give, and will there be financial support for those costly endeavors? While no one would ask you to pay publication fees out of pocket, I have heard of researchers refusing to financially support grad student travel to conferences, despite many departments requiring students to present in order to obtain their graduate degree. Travel to scientific conferences can run to several thousand in travel and participation costs per trip, and one trip to a national-level conference could cost an entire month’s graduate student salary.

Adopt healthy habits.

If everything comes together and you’ve been accepted into a graduate program that works for you, congratulations!! I wish you the best on the next step of your journey. If you are looking for more advice for once you get there, check out my previous posts, including preparing yourself before you start by adopting good habits for organization and work-life balance.

A very close-up image of a small, dark brown mouse perched on the arm of a graduate researcher wearing a surgical gown.

The first mouse study involving the Ishaq Lab begins!

Mice have arrived for a collaborative project on diet, gut microbes, and health in conjunction with researchers at Husson University! This is the first mouse project for the Ishaq Lab, and also my first hands-on mouse project (in my previous publications with mice, I received datasets but the mouse work was performed solely by my collaborators).

This is one of my first new collaborations at the University of Maine, which began in September 2019 as I was just finding my way around campus. An established researcher at Husson University, Dr. Yanyan Li, reached out to welcome me and talk about overlap between our work. Yanyan, her husband Dr. Tao Zhang, also a researcher at Husson University, and collaborator Dr. Grace Chen at Michigan State University, had been working on beneficial compounds found in broccoli using mice as an experimental model for Inflammatory Bowel Disease (IBD). Over the past year, in consultation with IBD experts Drs. Gary Mawe and Peter Moses (who I worked with previously while at UVM!), we have written several proposals for funding to expand the project.

Johanna Holman worked for several years with Yanyan and Tao, as an undergraduate researcher and then as a research assistant. She joined the Ishaq Lab this fall to continue her work as a graduate student and add gut microbiology to her skill repertoire. This experiment will form the base of her graduate thesis, and Johanna is taking a lead role in managing the project as well as several undergraduate researchers, including Dorien Baudewyns, assisting with the mice and lab work. As an early career researcher, and new to mice, I’m extremely lucky to be able to learn from an experienced team of researchers!