Interview with WeTalkScience: animal microbiome

A few weeks ago, I sat down with Sheba A-J, one of the producers of the WeTalkScience podcast, to talk about one of my recent publications in the research journal iScience, at which Sheba is also an editor. Listen to find out how lobsters are like humans, how I got involved on a project working with ants and nematodes, and how you can help make science a more welcoming place.

The full publication is:

Ishaq, S.L., A. Hotopp, S. Silverbrand, J.E. Dumont, A. Michaud, J. MacRae, S. P. Stock, E. Groden. 2021. Bacterial transfer from Pristionchus entomophagus nematodes to the invasive ant Myrmica rubra and the potential for colony mortality in coastal Maine. iScience 24(6):102663. Article.

Pilot project funded to study Vibrio bacteria in scallop farming

A collaborative pilot project was funded by the Maine Food and Agriculture Center (MFAC) to investigate Vibrio bacteria in scallop hatcheries in Maine! This will support some ongoing work by a collaborative research team at UMaine and the Downeast Institute, as we develop a long-term, larger-scale project investigating scallop health and survival in hatcheries, something which will be critical to supporting sustainable and economically viable aquaculture productions.

“Investigating microbial biofilms in Maine hatchery production of sea scallop, Placopecten magellanicus.”

Principal Investigator: Sue Ishaq

Co-Investigators:

  • Dr. Tim Bowden, Associate Professor of Aquaculture, University of Maine
  • Dr. Jennifer Perry, Assistant Professor of Food Microbiology, University of Maine
  • Dr. Brian Beal, Professor of Marine Ecology, University of Maine at Machias; and Research Director/Professor, Downeast Institute
  • Dr. Erin Grey, Assistant Professor of Aquatic Genetics, University of Maine

Project Summary: Atlantic deep-sea scallops, Placopecten magellanicus, are an economically important species, generating up to $9 million in Maine alone. Despite their potential to the aquaculture industry, hatchery-based sea scallop production cannot rely on the generation of larvae to produce animals for harvest. In hatcheries, the last two weeks of the larval maturation phase is plagued by massive animal death, going from 60 million scallop larvae down to a handful of individuals in a span of 48 hours. This forces farmed scallop productions to rely on collection of wild scallop spat (juveniles), but wild population crashes, habitat quality, harvesting intensity, and warmer water temperatures threaten the sustainability and economic viability of this industry. The reasons for sea scallop larvae death remain unknown, but other cultured scallop species are known to suffer animal loss from bacterial infections, including from several bacterial species of  Vibrio and Aeromonas. At the Downeast Institute in Beals, Maine, biofilms appear on tank surfaces within 24 hours. Routine screening for the presence of Vibrio sp. in tanks at DEI reveals no obvious signs of colonies in scallop tanks. Preliminary culturing and genetic identification from these biofilms suggests a species of Pseudoalteromonas, known biofilm formers which outcompete or inhibit other microorganisms. Our goal is to investigate the dynamics of tank surface biofilms in bivalve aquaculture facilities. Our long-term goals are to understand microbial community assembly and animal health during scallop hatchery production, and to standardize management practices to enhance the success of cultured scallop production.  

Experimental design schematic for this project. Our objectives are to 1) Identify the microbial community members involved in tank biofilms, and if it is a repeated or novel community assembly, and 2) Test for biofilm antagonism in vitro, using competing microorganisms, chemical treatments, and environmental conditions. 

“Healthcare and the microbiome” at the Microbes and Social Equity virtual symposium, June 18, 2021

The Microbes and Social Equity working group and The University of Maine Institute of Medicine present an inaugural symposium on:

“Microbes, Social Equity, and Rural Health”

June 14 – 18th, 2021

Format: virtual meeting, Zoom platform.

Day 1 of the Microbes and Social Equity virtual symposium

Session 5: “Access to healthcare and the microbiome”

Friday, June 18th, 13:00 ~ 16:30 EST. Registration for this session is closed.

Section leader: Emily Wissel

Access to healthcare, including treatment and preventative care, is critical to moderate beneficial host-microbe interactions and mitigate host-pathogen interactions, yet healthcare is inequitably distributed and often curbed by social policy. For instance, maternity care is well-demonstrated to improve health outcomes and facilitate the transfer of beneficial maternal microbes to newborns. Policies which support breastfeeding likewise promote this transfer of maternal microbes. Similarly, newborns and infants with access to care in their first five years of life have better outcomes overall than those with limited access. This difference in care during early life can impact lifelong differences in outcomes, reinforcing inequalities present at birth. This session will cover topics from the vaginal microbiome during pregnancy to the infant gut microbiome after birth, with perspectives from a clinician, public health researchers, and a biological scientist.

Program and Registration

Registration, a full speaker list and program, and details of each day can be found here.

Registration will occur for each (day) section individually, so participants can select which topics to participate in, or all of them. 

Registration is free and open to the public.

Summary

Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Many human clinical conditions or diseases have been established as being related  to the state of the human microbiome.  It is known that collective social inequity can drive the prevalence, morbidity, and mortality of some of these diseases or conditions. When access to a nutritious  diet and healthcare are impeded by social inequity, these disparities can also affect the human microbiome; this can further contribute to reduced or poorly functioning microbiomes. 

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. The emergence of the SARS-CoV2 (COVID-19) pandemic has dramatically altered our daily lives and the availability and ability to access essential resources, which has been worsened by pre-existing social inequity. Yet, the pandemic has also highlighted the inherent social disparity among those more likely to be exposed to infectious diseases.  

This meeting highlights recent investigations into beneficial and detrimental instances of microbial exposure, in the context of how social policy may mediate or deepen disparities between and within populations. In addition to invited presentations on thematic sections, each section will involve a discussion session using smaller breakout groups, to facilitate conversations and brainstorming between attendees.  These groups will be arranged around smaller themes or research questions, and group members will identify knowledge gaps for future research, as well as list actionable steps that can be taken using existing research to promote equitable social policy.  Ideally, meeting attendees will gain knowledge, collaborators and connections, and a path forward for turning their research into evidence-based policy to support public health.

Meeting dynamics

Unlike traditional symposium formats, this meeting will present some plenary-style talks by experts in the field, including biological scientists, social scientists, practitioners or policy makers, as well as facilitate discussion among participants. Each thematic section will feature 90 minutes of talks, which will be recorded and made publicly available after the live session.  After each plenary session, there will be 90 minutes of discussion in groups led by speakers and MSE group members, and assisted by notetakers, with ~10 participants per breakout room. Participants will be encouraged to “problem solve” a suggested topic or one of their own choosing.  The goal is to create action items that are meaningful for group participants, such as ideas for curricula development, identifying research needs or best practices, suggestions for engaging research in policy, and more.

“Stress and the microbiome” at the Microbes and Social Equity virtual symposium, June 17, 2021

The Microbes and Social Equity working group and The University of Maine Institute of Medicine present an inaugural symposium on:

“Microbes, Social Equity, and Rural Health”

June 14 – 18th, 2021

Format: virtual meeting, Zoom platform.

Day 1 of the Microbes and Social Equity virtual symposium

Session 4: “Social and Environmental Stress”

Thursday, June 17th, 13:00 ~ 16:30 EST.   Registration for this session is closed.

Section leader: Patricia Wolf

While it has been established that human behavior may impact microbiome structure, it has become evident that this is only part of the story. Historically racist housing policies may lead to inequitable exposure of those living in segregated neighborhoods to environmental pollutants. Additionally, life-long exposure to social and environmental stress faced by minority groups within the US may increase risk to disease through the alteration of host and bacterial metabolites. These inequities were compounded during the COVID-19 pandemic, during which neighborhood structural environments led to differing access to healthcare and treatment for the disease. Notably, those with the least access often were subject to higher exposure to the disease due to having “essential” employment. This session will explore the social and environmental factors that can impact human microbiomes, and will discuss measures that investigators should incorporate into research in order to fully understand microbial mechanisms of disease.

Program and Registration

Registration, a full speaker list and program, and details of each day can be found here.

Registration will occur for each (day) section individually, so participants can select which topics to participate in, or all of them. 

Registration is free and open to the public.

Summary

Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Many human clinical conditions or diseases have been established as being related  to the state of the human microbiome.  It is known that collective social inequity can drive the prevalence, morbidity, and mortality of some of these diseases or conditions. When access to a nutritious  diet and healthcare are impeded by social inequity, these disparities can also affect the human microbiome; this can further contribute to reduced or poorly functioning microbiomes. 

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. The emergence of the SARS-CoV2 (COVID-19) pandemic has dramatically altered our daily lives and the availability and ability to access essential resources, which has been worsened by pre-existing social inequity. Yet, the pandemic has also highlighted the inherent social disparity among those more likely to be exposed to infectious diseases.  

This meeting highlights recent investigations into beneficial and detrimental instances of microbial exposure, in the context of how social policy may mediate or deepen disparities between and within populations. In addition to invited presentations on thematic sections, each section will involve a discussion session using smaller breakout groups, to facilitate conversations and brainstorming between attendees.  These groups will be arranged around smaller themes or research questions, and group members will identify knowledge gaps for future research, as well as list actionable steps that can be taken using existing research to promote equitable social policy.  Ideally, meeting attendees will gain knowledge, collaborators and connections, and a path forward for turning their research into evidence-based policy to support public health.

Meeting dynamics

Unlike traditional symposium formats, this meeting will present some plenary-style talks by experts in the field, including biological scientists, social scientists, practitioners or policy makers, as well as facilitate discussion among participants. Each thematic section will feature 90 minutes of talks, which will be recorded and made publicly available after the live session.  After each plenary session, there will be 90 minutes of discussion in groups led by speakers and MSE group members, and assisted by notetakers, with ~10 participants per breakout room. Participants will be encouraged to “problem solve” a suggested topic or one of their own choosing.  The goal is to create action items that are meaningful for group participants, such as ideas for curricula development, identifying research needs or best practices, suggestions for engaging research in policy, and more.

Illustrated image of a cross section of the ground. A light brown ant is pictured in the ground along with a microbe. Text to the left of the image reads, "Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?". The names of six professors are listed below the text and image at the bottom left. In the bottom right corner, text reads, "The University of Maine" with "The University of Arizona" below it.

Paper published on bacterial transfer in insects and possible ecological impacts.

A collaborative paper on bacterial transfer in insects and the possible ecological impacts of that in the wild has been published in iScience! This work began a decade ago in the labs of Dr. Ellie Groden, recently retired Professor of Entomology in the School of Biology and Ecology at the University of Maine, and later Dr. Patricia Stock, a Professor in the School of Animal and Comparative Biomedical Sciences at the University of Arizona, who were investigating colony collapse of European fire ants (Myrmica rubra) which are invasive to Maine. The ants have a nasty bite, and can dramatically disturb the local plant and insect wildlife in coastal Maine.

Slide from Ishaq et al. Entomology 2020 presentation

When these invasive ant colonies collapsed, Drs. Groden and Stock wanted to find out why, as a possible means of developing a biological control strategy. It was thought that particular nematodes would ingest soil bacteria, and transfer it to ants once the worms invaded ant tissues to complete parts of their life cycle. This particular worm infection doesn’t kill the ants, but perhaps the soil bacteria were. Ants were collected from different colony sites, and investigations on the nematode worms inhabiting the ants were conducted.

Slide from Ishaq et al. Entomology 2020 presentation

Most of the work for this project was completed several years ago, with the exception of DNA sequencing data from a bacterial transfer experiment. I was added to the project by my collaborator at UMaine, Dr. Jean MacRae, an Associate Professor in the Department of Civil and Environmental Engineering who introduced me to the research team and shared the 16S rRNA dataset to use in my AVS 590 data analysis class in spring 2020. That semester was when the pandemic hit, and forced the course to move to remote-only instruction in March. UMaine graduate students Alice Hotopp and Sam Silverbrand were taking the class and learning 16S analysis on this dataset, and I mentored them through the analysis all the way to manuscript writing despite the incredible challenges that spring threw our way.

At the completion of the course, we shared the draft manuscript with the rest of the research team, who mentioned that several undergraduate honor’s theses had been written about the earlier experiment, but never published in a scientific journal. The team spent summer 2020 combining the three papers into one massive draft. The pandemic slowed down manuscript review, understandably, but I’m pleased to say that it was accepted for publication! In addition, this collaboration has led to further collaborations in the Ishaq Lab, several presentations (listed below), and is Sam’s first scientific publication, congrats Sam!!

Related Presentations

Alice Hotopp, A., Samantha Silverbrand, Suzanne L. Ishaq, Jean MacRae, S. Patricia Stock, Eleanor Groden. “Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?Ecological Society of America 2021 (virtual). Aug 2-6, 2021 (accepted poster).

Ishaq*, S.L., Hotopp, A., Silverbrand, S.,   MacRae, J.,  Stock, S.P.,  Groden, E. “Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?” Entomological Society of America 2020 (virtual). Nov 15-25, 2020. (invited talk)

Illustrated image of a cross section of the ground. A light brown ant is pictured in the ground along with a microbe. Text to the left of the image reads, "Can a necromenic nematode serve as a biological Trojan horse for an invasive ant?". The names of six professors are listed below the text and image at the bottom left. In the bottom right corner, text reads, "The University of Maine" with "The University of Arizona" below it.

IshaqS.L., A. Hotopp2, S. Silverbrand2, J.E. Dumont, A. Michaud, J. MacRae, S. P. Stock, E. Groden. 2021. Bacterial transfer from Pristionchus entomophagus nematodes to the invasive ant Myrmica rubra and the potential for colony mortality in coastal MaineiScience. In press. Impact 5.08.

Abstract

The necromenic nematode Pristionchus entomophagus has been frequently found in nests of the invasive European ant Myrmica rubra in coastal Maine, United States, and may contribute to ant mortality and collapse of colonies by transferring environmental bacteria. Paenibacillus and several other bacterial species were found in the digestive tracts of nematodes harvested from collapsed ant colonies. Serratia marcescens, Serratia nematodiphila, and Pseudomonas fluorescens were collected from the hemolymph of nematode-infected wax moth (Galleria mellonella) larvae.

Virulence against waxworms varied by site of origin of the nematodes. In adult nematodes, bacteria were highly concentrated in the digestive tract with none observed on the cuticle. In contrast juveniles had more on the cuticle than in the digestive tract. .  Host species was the primary factor affecting bacterial community profiles, but Spiroplasma sp. and Serratia marcescens sequences were shared across ants, nematodes, and nematode-exposed G. mellonella larvae. 

“Natural resources and the microbiome” at the Microbes and Social Equity virtual symposium, June 16, 2021

The Microbes and Social Equity working group and The University of Maine Institute of Medicine present an inaugural symposium on:

“Microbes, Social Equity, and Rural Health”

June 14 – 18th, 2021

Format: virtual meeting, Zoom platform.

Day 1 of the Microbes and Social Equity virtual symposium

Session 3: “Natural resources and access to environmental microbes”

Wednesday, June 16th, 13:00 ~ 16:00 EST.  Registration for this session is closed.

Section leader: Gwynne Mhuireach

The relationship between health and greenspace is well-established. There is also a recognized association between social equity and distribution of greenspace in many cities—parks are often larger, higher quality, and more prevalent in higher-income, upper-class neighborhoods; private yards and gardens are a luxury sometimes inaccessible to lower-income households; even street trees tend to be older, larger, and more numerous in higher income neighborhoods. New evidence shows that exposure to microbial diversity may be an important ecosystem service provided by urban greenspace, as exposure to greater microbial diversity early in life is related to lower prevalence of autoimmune disorders, such as allergies and asthma. This session will explore how environmental justice can be used to resolve health, microbial, and land access disparities.

Program and Registration

Registration, a full speaker list and program, and details of each day can be found here.

Registration will occur for each (day) section individually, so participants can select which topics to participate in, or all of them. 

Registration is free and open to the public.

Summary

Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Many human clinical conditions or diseases have been established as being related  to the state of the human microbiome.  It is known that collective social inequity can drive the prevalence, morbidity, and mortality of some of these diseases or conditions. When access to a nutritious  diet and healthcare are impeded by social inequity, these disparities can also affect the human microbiome; this can further contribute to reduced or poorly functioning microbiomes. 

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. The emergence of the SARS-CoV2 (COVID-19) pandemic has dramatically altered our daily lives and the availability and ability to access essential resources, which has been worsened by pre-existing social inequity. Yet, the pandemic has also highlighted the inherent social disparity among those more likely to be exposed to infectious diseases.  

This meeting highlights recent investigations into beneficial and detrimental instances of microbial exposure, in the context of how social policy may mediate or deepen disparities between and within populations. In addition to invited presentations on thematic sections, each section will involve a discussion session using smaller breakout groups, to facilitate conversations and brainstorming between attendees.  These groups will be arranged around smaller themes or research questions, and group members will identify knowledge gaps for future research, as well as list actionable steps that can be taken using existing research to promote equitable social policy.  Ideally, meeting attendees will gain knowledge, collaborators and connections, and a path forward for turning their research into evidence-based policy to support public health.

Meeting dynamics

Unlike traditional symposium formats, this meeting will present some plenary-style talks by experts in the field, including biological scientists, social scientists, practitioners or policy makers, as well as facilitate discussion among participants. Each thematic section will feature 90 minutes of talks, which will be recorded and made publicly available after the live session.  After each plenary session, there will be 90 minutes of discussion in groups led by speakers and MSE group members, and assisted by notetakers, with ~10 participants per breakout room. Participants will be encouraged to “problem solve” a suggested topic or one of their own choosing.  The goal is to create action items that are meaningful for group participants, such as ideas for curricula development, identifying research needs or best practices, suggestions for engaging research in policy, and more.

“Nutrition and the gut microbiome” at the Microbes and Social Equity virtual symposium, June 15, 2021

The Microbes and Social Equity working group and The University of Maine Institute of Medicine present an inaugural symposium on:

“Microbes, Social Equity, and Rural Health”

June 14 – 18th, 2021

Format: virtual meeting, Zoom platform.

Day 1 of the Microbes and Social Equity virtual symposium

Session 2: “Nutrition and the gut microbiome”

Tuesday, June 15th, 13:00 ~ 16:00 EST.  Registration for this session is closed.

Session leader: Laura Grieneisen

Access to fresh foods, and especially fruits, vegetables, and other products high in fiber, is well demonstrated to be affected by social inequity.  The lack of fiber and nutritious food can dramatically hamper a functional gut microbiome.  With the effects of COVID-19 being felt, the loss of income/loss of SNAP benefits and disruption to our food and transport systems will make it more difficult for many individuals to obtain a nutritious diet and reap the benefit of a healthy gut microbiome. This effect will be disproportionately felt by lower-income individuals. This session explores the effects of diet on the gut microbiome and health, food insecurity, policy to support food access, and how to use existing resources to create community-based food systems.

Program and Registration

A full speaker list and program, and details of each day can be found here.

Registration will occur for each (day) section individually, so participants can select which topics to participate in, or all of them. 

Registration is free and open to the public.

Summary

Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Many human clinical conditions or diseases have been established as being related  to the state of the human microbiome.  It is known that collective social inequity can drive the prevalence, morbidity, and mortality of some of these diseases or conditions. When access to a nutritious  diet and healthcare are impeded by social inequity, these disparities can also affect the human microbiome; this can further contribute to reduced or poorly functioning microbiomes. 

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. The emergence of the SARS-CoV2 (COVID-19) pandemic has dramatically altered our daily lives and the availability and ability to access essential resources, which has been worsened by pre-existing social inequity. Yet, the pandemic has also highlighted the inherent social disparity among those more likely to be exposed to infectious diseases.  

This meeting highlights recent investigations into beneficial and detrimental instances of microbial exposure, in the context of how social policy may mediate or deepen disparities between and within populations. In addition to invited presentations on thematic sections, each section will involve a discussion session using smaller breakout groups, to facilitate conversations and brainstorming between attendees.  These groups will be arranged around smaller themes or research questions, and group members will identify knowledge gaps for future research, as well as list actionable steps that can be taken using existing research to promote equitable social policy.  Ideally, meeting attendees will gain knowledge, collaborators and connections, and a path forward for turning their research into evidence-based policy to support public health.

Meeting dynamics

Unlike traditional symposium formats, this meeting will present some plenary-style talks by experts in the field, including biological scientists, social scientists, practitioners or policy makers, as well as facilitate discussion among participants. Each thematic section will feature 90 minutes of talks, which will be recorded and made publicly available after the live session.  After each plenary session, there will be 90 minutes of discussion in groups led by speakers and MSE group members, and assisted by notetakers, with ~10 participants per breakout room. Participants will be encouraged to “problem solve” a suggested topic or one of their own choosing.  The goal is to create action items that are meaningful for group participants, such as ideas for curricula development, identifying research needs or best practices, suggestions for engaging research in policy, and more.

“Biopolitics and the human microbiome” at the Microbes and Social Equity virtual symposium, June 14, 2021

The Microbes and Social Equity working group and The University of Maine Institute of Medicine present an inaugural symposium on:

“Microbes, Social Equity, and Rural Health”

June 14 – 18th, 2021

Format: virtual meeting, Zoom platform.

Day 1 of the Microbes and Social Equity virtual symposium

Session 1: “Biopolitics and the human microbiome”

Monday, June 14th, 13:00 ~ 16:30 EST.  Registration for this session is closed.

Session leaders: Michael Friedman and Sue Ishaq

The human microbiota is a mediator between social determinants of health and health outcomes. Social determinants, such as racism, sexism and social class position are power relations that shape human microbial communities by providing access and exposure to varying biological factors. In turn, shifts in such communities are associated with distinct health outcomes.  This opening session will introduce the concept of microbes and social equity, and open the discussion on how to create change.

Program and Registration

A full speaker list and program, and details of each day can be found here.

Registration will occur for each (day) section individually, so participants can select which topics to participate in, or all of them. 

Registration is free and open to the public.

Summary

Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Many human clinical conditions or diseases have been established as being related  to the state of the human microbiome.  It is known that collective social inequity can drive the prevalence, morbidity, and mortality of some of these diseases or conditions. When access to a nutritious  diet and healthcare are impeded by social inequity, these disparities can also affect the human microbiome; this can further contribute to reduced or poorly functioning microbiomes. 

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. The emergence of the SARS-CoV2 (COVID-19) pandemic has dramatically altered our daily lives and the availability and ability to access essential resources, which has been worsened by pre-existing social inequity. Yet, the pandemic has also highlighted the inherent social disparity among those more likely to be exposed to infectious diseases.  

This meeting highlights recent investigations into beneficial and detrimental instances of microbial exposure, in the context of how social policy may mediate or deepen disparities between and within populations. In addition to invited presentations on thematic sections, each section will involve a discussion session using smaller breakout groups, to facilitate conversations and brainstorming between attendees.  These groups will be arranged around smaller themes or research questions, and group members will identify knowledge gaps for future research, as well as list actionable steps that can be taken using existing research to promote equitable social policy.  Ideally, meeting attendees will gain knowledge, collaborators and connections, and a path forward for turning their research into evidence-based policy to support public health.

Meeting dynamics

Unlike traditional symposium formats, this meeting will present some plenary-style talks by experts in the field, including biological scientists, social scientists, practitioners or policy makers, as well as facilitate discussion among participants. Each thematic section will feature 90 minutes of talks, which will be recorded and made publicly available after the live session.  After each plenary session, there will be 90 minutes of discussion in groups led by speakers and MSE group members, and assisted by notetakers, with ~10 participants per breakout room. Participants will be encouraged to “problem solve” a suggested topic or one of their own choosing.  The goal is to create action items that are meaningful for group participants, such as ideas for curricula development, identifying research needs or best practices, suggestions for engaging research in policy, and more.

Registration open for the Microbes and Social Equity virtual symposium, June 14 – 18, 2021

The Microbes and Social Equity working group and The University of Maine Institute of Medicine present an inaugural symposium on:

“Microbes, Social Equity, and Rural Health”

June 14 – 18th, 2021

Format: virtual meeting, Zoom platform.

Program and Registration

Registration, a full speaker list and program, and details of each day can be found here.

Registration will occur for each (day) section individually, so participants can select which topics to participate in, or all of them. 

Registration is free and open to the public.

Summary

Microorganisms are critical to many aspects of biological life, including human health.  The human body is a veritable universe for microorganisms: some pass through but once, some are frequent tourists, and some spend their entire existence in the confines of our body tissues.  The collective microbial community, our microbiome, can be impacted by the details of our lifestyle, including diet, hygiene, health status, and more, but many are driven by social, economic, medical, or political constraints that restrict available choices that may impact our health.   

Many human clinical conditions or diseases have been established as being related  to the state of the human microbiome.  It is known that collective social inequity can drive the prevalence, morbidity, and mortality of some of these diseases or conditions. When access to a nutritious  diet and healthcare are impeded by social inequity, these disparities can also affect the human microbiome; this can further contribute to reduced or poorly functioning microbiomes. 

Access to resources is the basis for creating and resolving social equity—access to healthcare, healthy foods, a suitable living environment, and to beneficial microorganisms, but also access to personal and occupational protection to avoid exposure to infectious disease. The emergence of the SARS-CoV2 (COVID-19) pandemic has dramatically altered our daily lives and the availability and ability to access essential resources, which has been worsened by pre-existing social inequity. Yet, the pandemic has also highlighted the inherent social disparity among those more likely to be exposed to infectious diseases.  

This meeting highlights recent investigations into beneficial and detrimental instances of microbial exposure, in the context of how social policy may mediate or deepen disparities between and within populations. In addition to invited presentations on thematic sections, each section will involve a discussion session using smaller breakout groups, to facilitate conversations and brainstorming between attendees.  These groups will be arranged around smaller themes or research questions, and group members will identify knowledge gaps for future research, as well as list actionable steps that can be taken using existing research to promote equitable social policy.  Ideally, meeting attendees will gain knowledge, collaborators and connections, and a path forward for turning their research into evidence-based policy to support public health.

Meeting dynamics

Unlike traditional symposium formats, this meeting will present some plenary-style talks by experts in the field, including biological scientists, social scientists, practitioners or policy makers, as well as facilitate discussion among participants. Each thematic section will feature 90 minutes of talks, which will be recorded and made publicly available after the live session.  After each plenary session, there will be 90 minutes of discussion in groups led by speakers and MSE group members, and assisted by notetakers, with ~10 participants per breakout room. Participants will be encouraged to “problem solve” a suggested topic or one of their own choosing.  The goal is to create action items that are meaningful for group participants, such as ideas for curricula development, identifying research needs or best practices, suggestions for engaging research in policy, and more.

Johanna Holman is awarded UMaine Grad Student Employee of the Year!

Johanna Holman, Master’s of Nutrition student in the Ishaq Lab has been awarded the 2020-2021 University of Maine Graduate Student Employee of the Year!!!!

I met Johanna in the fall of 2019, when I was just establishing myself as a new Assistant Professor in the School of Food and Agriculture, and she was looking for an advisor for a graduate degree.  Right away, she impressed me with her background and enthusiasm for research.  I learned that Johanna began her undergraduate study as an art student before transitioning fluidly to science.  I see this is an asset – the ability to design visual aid and graphical representations of data is hugely important to science and sadly, not always a skill that scientists are trained to do. Johanna also had a number of service industry jobs, and initially in that first meeting, she was somewhat apologetic for not having been devoted to science jobs from the start.  I countered that I was pleased to see that she has worked in other industries, specifically in difficult service-related jobs.  It is often more important to have patience, dedication, and strong interpersonal skills, such as those gained by working in customer-facing jobs.  I believe that Johanna has and will continue to succeed because of her varied education and experience.

Once she became a science student during her undergraduate study, she worked in the laboratories of Drs. Yanyan Li, Associate Professor (of nutrition) in the College of Science and Humanities, and Tao Zhang, Assistant Professor of Basic Pharmaceutical Sciences, both of Husson University in Bangor.  There, she has performed nutritional biochemistry, worked with mouse models, and developed an idea of what she wanted to study in graduate school and pursue as a career. 

Johanna officially joined my lab and started as a Master’s Student of Nutrition at UMaine in fall 2020, and immediately got to work.  Not only did she begin preparations for the massive undertaking that is part of her project, but she began mentoring several undergraduates on and off campus, and started as a first time teaching assistant for the Chemistry department, which required navigating virtual labs.

Johanna’s project focuses on whether consumption of specific broccoli sprout preparations will elicit changes in the gut microbiota, to the effect of improving the production of microbiota-specific bioactives that have local anti-inflammatory effects, and promoting intestinal homeostasis by reducing dysbiosis. This project is a continuation of previous research on bioactive compounds in broccoli, completed in the labs of Drs. Yanyan Li and Tao Zhang at Husson University in Bangor.  While some of the work may be similar, the skill set is entirely new.  For the winter break, Johanna was managing a 40-mouse study for 5 weeks, which has resulted in hundreds of samples collected, hundreds of data time points, and enough follow-up laboratory and analysis work to keep her occupied for an entire year.  She has learned how to culture bacteria in an anaerobic chamber, which is a notoriously fussy machine that requires regular attention, as well as to grow them under different conditions for biochemical analysis and enzyme activity.  She will be learning DNA extraction, DNA sequencing library preparation, DNA sequence analysis, and will lead the generation of a large manuscript on the results.

It might seem too early to recommend a graduate student for this award after just one semester, but it is remarkable that a new master’s student could achieve all of this in their first semester during a pandemic.  I have informally mentored graduate and undergraduate students for years, and it is easy to spot the ones who will go far in science. Johanna has a highly successful career ahead of her, and I am honored to be one stop on that path.  This award will not only acknowledge the incredible amount of work she has accomplished, but it will support an early career researcher who has every quality to make research a hospitable and collaborate place.