USDA AFRI NIFA Agricultural Production Systems grant awarded to Menalled et al.

In 2016, I was a post-doc in the Menalled Lab, which studies plant and weed ecology in the context of agricultural production and sustainability.  There, I assessed soil bacterial communities under different farming management practices and climate scenarios.  I also helped to develop a grant proposal, which was just accepted by the USDA AFRI NIFA Agricultural Production Systems!  Leading this project is Dr. Fabian Menalled (as Principal Investigator, or PI), along with a number of other PIs; Dr. Amy Trowbridge, Dr. David Weaver, Dr. Tim Seipel, Dr. Maryse Bourgault, and Dr. Carl Yeoman, and collaborators Dr. Darrin Boss, Dr. Kate Fuller, Dr. Ylva Lekberg, and myself as a subaward PI.  I will again be providing microbial community analysis for this project, and collectively the project investigators will bring expertise in plant ecology, agronomy, economics, soil and plant chemistry, microbial ecology, agroecosystems, and more.

This research and extension project focuses on the needs of dryland agricultural stakeholders and it was designed in close collaboration with the NARC Advisory Board. While I was only able to attend one meeting, other team members regularly meet with Montana producers to discuss current issues and identify locally-sourced needs for agricultural research.  During this project, we will continue to meet with the NARC Advisory Board to share our results, evaluate implications, and better serve the producer community.

Diversifying cropping systems through cover crops and targeted grazing: impacts on plant-microbe-insect interactions, yield and economic returns.

Project summary

The semi-arid section of the Northern Great Plains is one of the
largest expanses of small grain agriculture and low-intensity livestock
production. However, extreme landscape simplification, excessive reliance on
off-farms inputs, and warmer and drier conditions hinder its agricultural
sustainability. This project evaluates the potential of diversifying this region
through the integration of cover crops and targeted grazing. We will complement
field and greenhouse studies to appraise the impact of system diversity,
temperature, and precipitation on key multi-trophic interactions, yields, and
economic outputs. Specifically, we will 1) Assess ecological drivers as well as
agronomic and economic consequences of integrating cover crops and livestock
grazing in semi-arid systems, 2) Evaluate how climate variability modify the
impacts of cover crops and livestock grazing on agricultural outputs. Specifically,
we will 2.1) Compare the effect of increased temperature and reduced moisture
on agronomic and economic performance of simplified and diversified systems,
2.2.) Assess the impact of climate and system diversity on associated biodiversity
(weeds, insect, and soil microbial communities) and above- and belowground
volatile organic (VOC) compound emissions, and 2.3) Evaluate how changes in
microbially induced VOCs influence multitrophic plant-insect interactions.

Objectives

  1. Assess key ecological drivers as well as agronomic and economic consequences of integrating cover crops and livestock grazing in semi-arid production systems
    • Compare the agronomic and economic performance of simplified and diversified systems
    • Assess the impact of cover crops and livestock grazing on the associated biodiversity (weeds, insects, and the soil microbiota)
  2. Evaluate how climate conditions modify the impacts of cover crops and livestock grazing on semi-arid production systems
    • Compare the effect of temperature and soil moisture on agronomic and economic performance of simplified and diversified systems
    • Assess the impact of climate and system diversity on associated biodiversity and above- and belowground volatile organic compound (VOC) emissions
    • Evaluate how changes in VOCs emissions influence important multitrophic interactions such as resistance to wheat stem sawfly and natural enemy host location cues
  3. Integrate the knowledge generated into an outreach program aimed at improving producers’ adoption of sustainable diversified crop-livestock systems

ASM Microbe 2016 was a blast!

For the last four days I was in Boston for the American Society for Microbiology (ASM) Microbe 2016 meeting.  The meeting is held in Boston on even years, and New Orleans on odd. 
image

The conference brings together all sorts of microbiologists: from earth sciences, to host-associated, to clinical pathologists and epidemiologists, to educators.  This year, there were reportedly over 11,000 participants! Because of the wide variety of topics, there is always an interesting lecture going on related to your topic, and it was a wonderful experience to be able to talk directly to other researchers to learn about the clever techniques they are using.  I posted about a tiny fraction of those interesting projects on Give Me The Short Version.

On Sunday, I presented a poster on “Farming Systems Modify The Impact Of Inoculum On Soil Microbial Diversity.”  I analyzed the data from this project for the Menalled Lab last year, and it has developed into a manuscript in review, as well as several additional projects in development.

Ishaq et al ASM 2016 poster

One of the best parts of ASM meetings is that you never know who you are going to run into, and I was able to meet up with several friends and colleagues, including Dr. Benoit St-Pierre, who was a post-doc in the Wright lab at the University of Vermont while I was a student, and Laura Cersosimo, the other Ph.D. candidate from the UVM Wright lab who will be defending in just a few months!  I also ran into Ph.D. candidate Robert Mugabi, who is hoping to defend by March and in the Barlow lab at UVM while I was there.  Most unexpectedly, I ran into a A Lost Microbiologist who had wandered in from Norway: Dr. Nicole Podnecky, who I met at UVM back when we were undergraduates!

This slideshow requires JavaScript.

Of course, no conference would be complete without vendor swag.