Teaching Statement development series: scientific literacy

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here as part of a development series, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

*Please note, these are selected portions of my Statement which have been edited to remove sensitive information. These are early drafts, and may not reflect my final version. Tenure materials that I generate are mine to share, but my department chair, committee, and union representative were consulted prior to posting these. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty.*


Improving scientific literacy and communication skills

In all of my curricula development, I put particular emphasis on designing assignments which build technical and communication skills. The technical skills are developed through walkthroughs for learning to use online databases such as NCBI’s Nucleotide (https://www.ncbi.nlm.nih.gov/nucleotide/) and MG-RAST (https://www.mg-rast.org/), learning to read scientific articles, and learning to analyze data as needed.  AVS 454/554 is primarily skills-based, and specific skills are listed in the Developing curricula section.

The communication skills are primarily practiced through written assignments. Scientific writing is particularly important in microbial ecology and host-microbe interactions, fields in which strict memorization might not prove useful, as the body of knowledge changes rapidly. Rather, the material lends itself to critical thinking and debating theory, to presenting a scientific argument, to problem solving, or to composing technical/scientific writing, which is different than much of the written assignments students have accomplished in other coursework. In allowing students the word count to work through their thoughts, instead of providing short answers, they are able to find the words to express their opinion on, for example, the Hygiene Hypothesis when only weeks before they didn’t know that some microbes can turn the immune system on or off. 

Written assignments allow me to provide students with more substantial feedback, including suggestions on grammatical corrections, sentence structure or placement, or leaps-of-logic where they left readers behind, and of course, on the strength of the scientific argument. This is particularly helpful when learning to write technical science.  These written assignments are narrowed to a specific topic but are otherwise open-scope, and while I provide a recommended reading list, multiple options are available for most of the lectures, which allows students to select the journal articles and scientific information used as the reference material for their assignments. In giving students the agency to choose a topic to write about from the curricula tasting menu I’ve provided in my lectures, I receive back more diverse topics than just what I provided, which keeps things interesting for me. Students are more engaged when they can connect to material of their own choosing and select something relevant to their life. And, in giving them assignments which practice their writing voice, I witness their progression towards mature scientific writing.  

For most of the students I have taught, my class is their first formal introduction to the subject, whether it be research, host-microbe interactions, or DNA data analysis. To give students more time to practice the material, and to improve retention, I give topic-related readings, have a guided discussion at the end of lectures, and ‘stack’ assignments. For example, in AVS 254, Introduction to Animal Microbiomes, students write a non-technical summary of a scientific article: 1-2 paragraph summary in which they have to introduce the paper and its purpose, the methods used, and a major result or two. Trying to explain a complex experiment in simple terms is more challenging than it seems, because students need to understand the material in order to recreate it into their own words. By restricting the length in these assignments, it forces students to be more direct in their explanation. When it comes time to write an essay for a take-home exam, I allow the students to build off those summaries, if they choose, having received my feedback.

I also promote more creative information presentation in assignments, including “concept maps”. The assignment is to create a visual outline (diagram) around the specified topic. Starting with a main idea or topic in the center, branches are created out to secondary ideas, and so on, like a spider web, to create a concept map/diagram of important related topics and information. The goal of this is to create a study guide based on what students felt are the important concepts, centered around the material we have covered in that section of the course material.  Creating a visual map in this way helps students create order out of the information, by setting up a hierarchy of importance to better understand the relationships between ideas. An example is provided below, with permission from the student.

Concept Map on ‘Microbes and Technology’, by Kiera O., student in AVS254 Fall 2020.  Used with permission.

Previous installments:

Teaching Statement development series: developing curricula.

Teaching Statement development series: accessibility

Teaching Statement development series: developing curricula

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here as part of a development series, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

*Please note, these are selected portions of my Statement which have been edited to remove sensitive information. These are early drafts, and may not reflect my final version. Tenure materials that I generate are mine to share, but my department chair, committee, and union representative were consulted prior to posting these. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty.*


Developing curricula

The first course I proposed which was accepted by the University undergraduate curriculum committee is AVS 254, Introduction to Animal Microbiomes, which I have begun teaching annually starting fall 2020.  This lecture and discussion-based course introduces students to host-associated microbiomes; the genomic collection of bacteria, archaea, fungi, protozoa, and viruses present in a host ecosystem. In each lecture, we focus on an anatomical location, theory, or a mode of microbial transfer.  We discuss the host and environmental pressures which select for the resident microbial community there, and the dynamics involved in community recruitment, function, transmission, and interactions with the host.  The material is primarily in animals, including mammals, birds, fish, amphibians, and humans, with occasional material on insects. This course is anticipated to have broad appeal to students in the School of Food and Agriculture, as well as Microbiology and Molecular Biology.  It is my hope that students are introduced to the field of host-associated microbiology through this course, and go on to participate in relevant research, during which they would generate microbial community DNA sequence datasets.  Students could then take AVS 454 in the spring of their senior year to learn to analyze this data and generate a scientific manuscript. In this way, AVS 254 sets the academic track for undergraduates to follow to learn about microbiomes from theory to application.  The course assignments feature a variety of written assignments, including ones to introduce them to online databases of microbial studies, to communicate science to the general public, and to synthesize information from various sources. The full syllabus and information about the class is relayed on my professional blog, https://sueishaqlab.org/teaching/avs-254-intro-to-animal-microbiomes/

The second, which I taught as an AVS special topics course in spring 2020, and which has been approved for spring 2021 as a formal course,  is AVS 454/554 DNA Sequencing Analysis Lab, with undergraduate and graduate sections, respectively.  This course takes students from raw DNA sequencing data through quality assurance, data interpretation, statistical analysis, and presentation of the results as a draft scientific manuscript.  Multiple drafts of the manuscript are submitted, and in addition to my reviews, students provide single-blind peer review, collectively allowing for students to refine and improve their presentation of results over time. Students are encouraged to bring their own microbial community data, or I provide unpublished data from my research collaborators, thus students have the opportunity to pursue submission of their assignment manuscripts for scientific publication along with cooperating researchers.  There is a critical need in the research community for analysis of small projects like the ones used in this class; often these data are from low-priority small projects, or researchers simply do not have the time or expertise to train students in data analysis and interpretation.  The special topics version had 7 students, with 2 additional students informally attending the class, and resulted in 3 scientific manuscripts submitted for review in fall 2020, all with student authors. The full syllabus and information about the class is relayed on my professional blog, https://sueishaqlab.org/teaching/avs-454-554-dna-sequencing-analysis-lab/

Beginning in fall 2020, I began teaching AVS 401 and 402, Senior Paper in Animal Science I and II, respectively.  Together, they form the Capstone Experience for AVS seniors.  The scope of this class was and remains: student involvement in a research project, for which students develop a research proposal in written and oral presentation formats, and then develop a research report in written and oral presentation formats. However, I developed new lectures for the class to introduce students to the proposal writing process, and research in general, as many AVS students have focused on professional applications and not on research.  These include, “What is research”, “Conducting ethical research” which also features a guest lecture from the Paula Portalain at the Office for Research Compliance, “How to read a scientific article”, “Conducting a literature review” which also features a guest lecture by Anne Marie Engelsen a Science Librarian at Fogler Library, “The proposal writing process: experimental design”, “The proposal writing process: project management.”, and “Giving a scientific presentation”. To develop their presentation skills, students first give a 3-min, non-technical “elevator speech”, then a professional presentation at the end of the semester.  To develop their written skills, students write a project summary/abstract, an outline of their proposal, and two more substantial drafts of the proposal.  For the outline and second draft, students will continue single-blind peer review of other proposals, to provide feedback and to improve their skills in science review and critique. The full syllabus and information about the class is relayed on my professional blog, https://sueishaqlab.org/teaching/avs-401-senior-paper-in-avs-i/.

The following sections detail how these curricula are developed and the intent behind assignments. 


Previous installments:

Teaching Statement development series: accessibility

Teaching Statement development series: accessibility

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here as part of a development series, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

*Please note, these are selected portions of my Statement which have been edited to remove sensitive information. These are early drafts, and may not reflect my final version. Tenure materials that I generate are mine to share, but my department chair, committee, and union representative were consulted prior to posting these. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty.*


Improving the accessibility of course materials

While course content might seem like a more pertinent place to begin this Statement, the intellectual content of a course is predicated on the ability of students to access and connect with those materials. The pandemic and social turmoil of 2020 has made this a year like no other for our students, and in conversations with them, I have gathered that it has created new challenges for them and exacerbated existing ones. The primary obstacle for students to attend live lectures and provide effort on assignments is the general increased workload related to online classes, the necessity of employment, and the inflexibility of employers who schedule student employees in a way that precludes them from attending live lectures.  Further, students are under an overwhelming amount of stress, and this has exacerbated learning disorders and created its own obstacles to engaging with course material. To that end, I have made a number of improvements in my course presentation to make materials more approachable and inclusive to learning style and student life outside of the classroom, which have been adopted in 2020 but will persist.

All the course materials for these classes are made available in Brightspace at the beginning of the semester, so students may download readings and lectures when they have access to internet services.  This also allows them to a priori assess the coursework and gauge the expectations on their time, to better plan their effort over the semester in relation to other engagements.  Assignments may be submitted early, and are accepted late with grade penalties applying in some cases.  In 2020-2021, grade penalties are waved to facilitate student scheduling during the pandemic.  For presentations, students may schedule time blocks well in advance, or may opt to record their presentation and submit videos.  Live lectures are recorded and videos are made available to students immediately after class, and previous to the pandemic I gave students the option to attend via remote video conferencing when they were home sick but did not want to miss class.

The availability of coursework in advance and the flexibility of format allows for students to engage with the work at their own pace and in a way that feels more comfortable to them.  In particular, the use of online discussion forums in Brightspace has given a voice to even the quietest of students and allowed for more diverse perspectives to contribute to the topic.

The use of online teaching platforms also allows for more accessibility in the materials for students with additional challenges. For example, after conferring with a student about understanding course materials, I added audio instructions to assignments (a recording of me reading the directions), which allows students with language dysmorphia or visual impairment to more easily understand what is being asked of them.

The use of online teaching software helps me curate assignments to more accurately test student learning and not just how clearly I asked the quiz questions.  For example, it is much easier to track student performance over time and per assignment, and assess which portions of the assignment should be revised to improve their clarity.

Finally, one barrier to student engagement in coursework appears to be a lack of student confidence stemming from an underestimation of their own agency in asking for help, accommodation, or more visibility in the class. Students appear resigned to accept a zero instead of asking for deadline extensions, or for asking for more effort from their instructor. Students appear to internalize poor performance as a personal failure, rather than a discrepancy between how the information is communicated and how it is received.  To that end, I solicit feedback using anonymous polls, and in lectures or assignments which do not generate student engagement I ask students how they would have rephrased the questions I pose to them.  

Something which I have not yet tried, but intend to implement in the future, is a self-reflection assignment at the beginning of the semester for each class. The goal is for students to feel welcome, to feel that they have agency in their education in this class, and to feel that they can let go of control in order to try something new. First, students will be asked to watch a reading of the children’s story, If You Give A Mouse a Cookie (https://youtu.be/QCDPkGjMBro), about a mouse that keeps asking for things.  Next, students will watch a TEDTalk, “Asking for Help is a Strength, Not A Weakness” (https://www.youtube.com/watch?v=akiQuyhXR8o&feature=youtu.be&ab_channel=TED). Then, students will watch the TEDTalk “The Art of Letting Go… Of The Floor” (https://www.ted.com/talks/siawn_ou_the_art_of_letting_go_of_the_floor/details). Finally, students will reflect and write down their goals for the class; 1 thing they want (the cookie), 1 thing they need (the help), and 1 thing they want to let go of (their floor).  

Microbiomes Across (Agricultural) Systems

Beginning in early 2019, I participated as one of the guest editors for the Microbiomes Across Biological Systems special call hosted by three PLoS Journals. The journal collection was officially released in early 2020, but due to the global upheaval this year, the overview piece planned by the guest editors was not able to be completed. Here is a partial overview, written by myself and written by Dr. Noelle Noyes, Assistant Professor at the University of Minnesota.

Diet and gut systems

Ecosystem dynamics are important at any scale

As humans, animals, and plants are key members of their environmental ecosystems, so too are microorganisms key members of the host-associated ecosystems in which they reside.  Throughout eons of interactions between microorganisms and macroorganism hosts, specialized and reproducible host-microbial interactions developed, leading to inherent differences in the microbial communities residing within even closely-related microorganism hosts (Bennett et al. 2020; Loo et al. 2020; Sun et al. 2020).  The strength and outcome of each of these host-microbial interactions can sway the trajectory of that host’s life, and decades of research has only barely uncovered the mechanisms behind the exorbitantly complicated relationships between host and microbial community.  In part, this is because the host microbiome does not develop in isolation; it is dependent on the environment (e.g. Bennett et al. 2020), on diet (e.g. Taylor et al. 2020), on the host signalment (e.g. Jacobs et al. 2020), and upon all the minute details of that hosts’s life which informs the “who”, when, why, and how of host-microbial interactions. To better understand biological systems, we must evaluate them at different scales, from the microbial ecosystems to the environmental ones, and how microbial selection and transfer are the mechanisms by which these scalable ecosystems are connected.

Your gut microbiota are what you eat

Diet is the most consistent and striking aspect of a host’s lifestyle which can select for different microbial communities in the gastrointestinal tract (Bloodgood et al. 2020; Loo et al. 2020;  Lü et al. 2020; Ogato et al. 2020; Sun et al. 2020; Taylor et al. 2020), and especially at different locations along the GI tract depending on localized anatomy and organ-specific environmental conditions (Subotic et al. 2020; Lourenco et al. 2020).  The amount of different macronutrients, such as proteins, fats, or carbohydrates, in a diet selectively encourage different biochemical capabilities in the gut microbiome and the microbial members which can thrive under those conditions (Lourenco et al. 2020).  At a finer resolution, the specific types of each nutrient, and their availability for catabolism will also affect the gut microbiome (Taylor et al. 2020).  

Yet, diet may affect the microbiome of different host species in nuanced ways, based on dissimilar anatomy of the gastrointestinal tract, the relative stability of host-microbial interactions and host reliance on their gut microbiota, and the relative stability of the diet of the host. For example, specialized herbivores which possess a four-chambered stomach, known as ruminants, are dependent on the presence of fibrolytic microbiota, yet due to the overwhelming microbial diversity present in their GI tract they have functional redundancy which allows for a great deal of latitude in the specific microbial species present in their communities.  Microbiota in the rumen of cattle are easily swayed by changes in diet composition (Lourenco et al. 2020; Ogato et al. 2020), as were microbiota in sea turtles (Bloodgood et al. 2020) and potato ladybird beetles (Lü et al. 2020), whereas diet composition seems to affect only the less abundant community members in the honeybee gut (Taylor et al. 2020).  

The impact of diet on the gut microbiome and host health is an active and long-standing research field, yet the depth and breadth of dietary effects leaves many questions yet unanswered, particularly in cases where feeding the animal host is prioritized over feeding the gut microbiota specifically.  Animal production and weight gain is a primary goal of feeding strategies in agriculture, often with detrimental effects to the functionality of gut microbiome which can lead to systemic health problems in the animal if the perturbation to the microbiome is extensive or protracted. An understanding of how host-microbial ecosystems can be altered over time to prevent such health problems is important (Ogato et al. 2020). Similarly, wild animal recovery programs opt for diets to support weight gain in malnourished animals, even when the diet composition is contrary to their natural diet. In recovering juvenile sea turtles, feeding an omnivorous diet to promote weight gain over the herbivorous diet these turtles consume at this stage of life causes changes in gut microbiota profiles and it is unknown how this may affect long-term digestive function and health (Bloodgood et al. 2020).

An interesting and understudied aspect of the effects of diet on the gut microbiome is the potential for knock-on effects across microbial ecosystems.  For example, changing the diet may impact the gut bacterial profiles based on “who” is directly catabolizing those nutrients, but may also impact other microorganisms which are supported by the byproducts of that microbial digestion.  Similarly, therapeutics targeting some microbial community members may inadvertently alter other community members.  A deeper understanding of how diet and medication affects the entire microbial community and not just selected members can reveal insight into community dynamics and the relative risk of medications to cause disruptions.  For example, anthelmintic in beagles were shown to not alter fecal microbial communities (Fujishiro et al. 2020).

Environment to host to host: microbial transfer highlights connections between systems

Yet, what constitutes a beneficial microbiome for one animal species may be detrimental to another animal species. A dramatic example of this is vector-borne infectious disease, in which symbiotic or neutral members of an insect microbiome are highly pathogenic in other animals which have not learned to tolerate or control those particular microorganisms. Bacteria carried by arthropods, such as mosquitos, flies, or ticks, may provide nutrition or disease-mitigation benefits to its arthropod host yet cause widespread disease and mortality in humans and animals (Bennett et al. 2020). Interaction with the ecosystem can recruit microbial members to a host-associated microbial community.  Habitat destruction alters the quality of the environment and thus microbial transfer from environment to insect, and this can make arthropod microbial communities more variable (Bennett et al. 2020). It is yet unknown if these knock-on changes to the arthropod microbiota will have positive or negative impacts for vector-borne diseases.  

Studies such as Bennet et al. (2020), which put host-associated gut microbial community assessment into the context of habitat quality and environmental microbial transfer, remind us that microbial communities do not exist in isolation.  Understanding how the environment shapes the microbial communities which shape the host is a critical aspect to understanding the connectedness between biological systems.  Further, it better illuminates the dynamics of microbial transmission and when they are and are not transferred.  Maternal transfer is a well-demonstrated mechanism of vertical transmission of microorganisms, and transfer between social pairs is a method of horizontal transmission of microorganisms, both often demonstrated via microbial community similarity analysis.  However, when pair-bonded tree swallows are sampled asynchronously, there is no significant level of similarity in their gut microbiota (Hernandez et al. 2020).

The need to put host-associated gut microbial community assessment into the context of environment is also highlighted in Loo et al. (2020), in which habitat and geographic location impacted the gut microbiome of island finches independently of foraging diet data. Environmental conditions, localized plant diversity, and localized niche competition can also impact the type, nutritional content, and life stage of plant life, which can in turn impact the gut microbiota recruited in those host animals consuming plants.  As discussed in Jacobs et al. (2020), when animals are removed from their natural environments and held in captivity, where local macro-biodiversity is dramatically reduced, there is often a corresponding decline in host gut microbial diversity which can impact animal health.  In semi-captive situations, such as beehives, animals may still freely encounter diverse environmental microorganisms, but the habitat or housing design may impact host behavior and/or stress response due to interactions with humans.  Chronic stress has been demonstrated to negatively impact the diversity and functionality of host-associated microbial communities in the gut by altering the host immune system and its latitude for microbial tolerance. Thus, even at the very localized scale, environmental conditions and habitat play a role in host-microbial interactions (Subotic et al. 2020).

Featured papers, which can be found here.

  • Bennett et al. Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods
  • Bloodgood et al. The effect of diet on the gastrointestinal microbiome of juvenile rehabilitating green turtles (Chelonia mydas)
  • Fujishiro et al. Evaluation of the effects of anthelmintic administration on the fecal microbiome of healthy dogs with and without subclinical Giardia spp. and Cryptosporidium canis infections
  • Hernandez et al. Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners
  • Jacobs et al. California condor microbiomes: Bacterial variety and functional properties in captive-bred individuals
  • Loo et al. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome
  • Lourenco et al. Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate
  • Lü et al. Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata.
  • Ogato et al. Long-term high-grain diet altered the ruminal pH, fermentation, and composition and functions of the rumen bacterial community, leading to enhanced lactic acid production in Japanese Black beef cattle during fattening
  • Subotic et al. Honey bee microbiome associated with different hive and sample types over a honey production season
  • Taylor et al. The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera)

Water systems

written by Dr. Noelle Noyes, University of Minnesota

Environmental and physiochemical factors structure water-associated microbiomes

Water bodies are highly diverse ecosystems, and this is reflected in the articles of this Special Edition, which investigate the microbiomes of Indian mangroves, Icelandic cold springs, Antarctic lakes, urban lakes in Beijing, and Pacific seawater. A common theme emerging from this diverse collection is that water-associated microbiomes are highly influenced by the nutrient and physiochemical properties of the water body itself; and that these properties, in turn, are influenced by the surrounding atmospheric and environmental inputs. For example, nitrogen levels were correlated with microbial composition in Mangrove-associated and Beijing urban lake water samples (Dhal et al 2020, Wang et al 2020), and nitrogen fixation capacity of the microbiome was found to vary significantly by water depth within Antarctic benthic mats (Dillon et al 2020). pH levels were found to influence the microbiomes of Icelandic cold springs  (Guðmundsdóttir et al 2019) and Mangrove-associated waters (Dhal et al 2020); and the archaeal composition of Beijing urban lake sediment (Wang et al 2020). 

Water-associated microbiomes are dynamic across gradients, geography and time

While water bodies exhibit heterogeneous physiochemical and nutrient properties depending on their environmental and geographical circumstances, the articles in this collection demonstrate that many water-associated microbiomes fluctuate predictably and periodically. For example, the diversity of seawater microbiomes exhibited diel fluctuation, which itself was characterized by rhythmic changes in temperature and concentrations of nitrate, ammonium, phosphate and silicate (Weber et al 2020). Microbiome structure and composition also correlated with gradients established by water depth (Dillon et al 2020, Weber et al 2020), eutrophication (Dhal et al 2020), and distance from coral reefs (Weber et al 2020). These findings emphasize the importance of the physical environment from which water samples are collected, and the fact that water and water-associated samples are inherently connected to — and impacted by — features that may be located far away from the actual sampling site. This highlights the importance of contextualizing sampling sites both temporally and spatially.

Featured papers, which can be found here.

  • Paltu Kumar Dhal et al, Insights on aquatic microbiome of the Indian Sundarbans mangrove areas
  • Megan L. Dillon et al, Environmental control on the distribution of metabolic strategies of benthic microbial mats in Lake Fryxell, Antarctica
  • Ragnhildur Guðmundsdóttir et al, Bacterial diversity in Icelandic cold spring sources and in relation to the groundwater amphipod Crangonyx islandicus
  • Yuxin Wang et al, Comparative Study on Archaeal Diversity in the Sediments of Two Urban Landscape Water Bodies
  • Amy Apprill et al, Diel, daily, and spatial variation of coral reef seawater microbial communities
  • Robert Hilderbrand et al, Using the microbiome to assess the ecological condition of headwater streams

Looking back on my first year as an assistant professor

Almost year ago, I woke up early to drive an hour and a half from the place I was staying to the University of Maine campus in Orono. My housing had fallen through after I had driven across country from Oregon to Maine, and apartments were difficult to find as students were returning for the fall semester. I took my highway exit, and almost immediately joined a mile and a half long line of cars waiting to get to campus. This may not sound like a lot, but Orono is small – really small. There are three bridges onto the island, each with a single lane of traffic in either direction. It was 8 am, and I still needed to get to campus and find parking before my 8:30 am meeting with my new department chair, something I very much did not want to be late for.

View from the bridge in Orono.

After moving only 100 yards in 10 min, I was able to turn around in a side street and get back on the highway to the next exit, in Old Town, from where I could drive southward on the island. In another 10 minutes, I had made it back to the highway, onto campus, and had found parking. That simple detour makes a nice metaphor for starting out as new faculty: there is probably an easier way to accomplish your task, you just don’t know yet that that way exists.

Last September, I joined the University of Maine as an Assistant Professor. It’s my first academic faculty position, and with it comes a variety of new responsibilities (you can read here about the differences in academic positions). There’s a learning curve to any new job, but faculty positions, in particular, require a level of expertise in time management that you likely have never encountered.

I needed to establish a laboratory and order things for it, recruit students and develop career development plans for them; develop research plans spanning the next five years; propose and then develop new classes; learn a new institutional system for ordering, reporting, teaching, advising; meet new people; and the myriad other administrative tasks that go along with teaching, advising, and managing a laboratory.

There is pressure, some from external sources but primarily from ‘the thorn in your side which seeks accomplishment’, to advance each of your goals immediately and simultaneously. You need to show progress early on, but it is not possible to devote the time and focus that each of these goals demand to all of them at once. If you try, you will find yourself buried in unmet objectives and overcooked marshmallows.

Instead, plan well in advance and try to concentrate on one objective at a time. I’ve compiled some examples, thoughts, and advice on navigating the first year of a faculty position, which is hopefully entertaining if not also useful.

Bring a campus map

One of the largest draws on my time in the first few weeks was simply finding things: buildings, services on campus, my mailbox, where the faculty parking lots were, and where the best coffee was. Make sure you have a campus map handy. I learned the hard way not to run a generic search for building names to find addresses, when I went to the wrong building which shared the name of, and was across the campus from, the building I needed to be in for a meeting. Facilities buildings can be particularly challenging to locate as they aren’t always marked, but may store excess and available office or laboratory furniture, key services, chemical supply, and more.

In addition to physical resources, I also needed to find personnel resources: who handled my startup funds? Purchasing? Hiring students? To whom do I submit course proposals? I politely framed my emails to people when fishing for the applicable administrative staff personnel, and made sure to thank them for redirecting me to the correct person.

Do not neglect the mountain of paperwork

There are so many forms you need to fill out in the first year, and you keep finding new forms as you go. I needed to sign and return my contract, funds letters, health insurance, financial conflict of interest, and more. I needed to sign paperwork to hire students, get my travel approved and more to submit my travel receipts, paperwork to propose courses, to request approval to be listed as graduate school faculty (which is not automatically conferred), and request approval to be graduate faculty in other departments or programs to be able to advise students there. You need to fill out order forms to purchase supplies, and sign off on monthly expenditure summaries. I suggest finding access to a scanner or fax, and/or software that allows you to edit and digitally sign PDFs, especially if you’ll be remote while you are trying to relocate and find housing.

Also be prepared for hours and hours of training: you’ll need to know how to use the university online system for employees, online teaching software, advising tracking programs, and any other online systems the university uses. And you need an extensive amount of compliance or professional development training your university requires, including FERPA for working with student information, OSHA and CITI safety training for working in a lab (often annual), university-based safety training for working in a lab, and implicit bias or inclusion training. Many schools also offer training in course development, and many of the other basic skills needed by professors. And be sure to keep all that paperwork, just in case you ever get audited!

Take time to generate new materials

Despite keeping copies of old protocols, lectures, and written materials that I might reuse, I found myself generating an immense amount of new written materials. While institutions often have templates available for safety materials available for use, they still require personalization to the hazards specific to the working conditions in your research location (lab, farm, field, etc.). Even the course materials that I had previously generated all needed to be reformatted and personalized to the student audiences I will have at UMaine. Here are a few examples of materials I had to generate this year:

  1. Lab safety training records (mine is a 2 page in-lab walk-through and spreadsheet linking to up to 15 other training modules)
  2. Chemical hygiene plan (how to protect yourself from the hazards in the lab)
  3. Updated lab protocols for every procedure and culture media recipe to be used
  4. Lab handbook on expectations, finding campus resources
  5. New curricula, which requires a draft syllabus, a course proposal form explaining learning outcomes and how they will be measured, not to mention the lectures, reading, assignments, and assessments to go along with it.
  6. Research proposals – by far the most intensive. I have written/co-written eight this year, ranging from one to several dozen pages in length and varying complexity.
A stack of papers facedown on a table.

Writing, especially technical writing, takes time, which was something UMaine gave me. I had almost no teaching obligation, and no undergraduate academic advising, for my first year. This gave me the opportunity to spend blocks of time focused on developing research plans that will guide me over the next 5 years, or create 15 – 40 lectures per course. This time was a luxury not afforded to all new faculty, and while you can often ask for it during job contract negotiations, many institutions pressure their new faculty to take on a lot of obligation in their first year. In that case, have as much written material ready before you begin the job would have been helpful. But, since I went from gut microbiology to soil to dust, and because I was teaching science to primarily liberal arts students, none of my old written materials were appropriate to use without some amount of revision.

Ask for help

As new faculty, you don’t yet know what to ask or who has the answer. Even finding your mailbox can be a challenge at first. Rather than waste your time trying to figure it out, doing it wrong, and then having to fix it, just ask someone for help. Portions of your funded research proposals will go to paying for administrative staff, you should use their services to help minimize the time you spend on administrative tasks. Especially since you may spend hours trying to order supplies through the university ordering system, matching receipts to expense reports, allocating expenses to different funding chartstrings, and setting up contracts with outside vendors, but you don’t get any credit in your tenure review for having spent all that time on it.

This also extends to facilities management staff, especially safety and environmental management personnel. They are the ones that have approval rights over the work you propose to do in the research spaces allotted to you. They are always incredibly enthusiastic people who value organization, preparation, and training in keeping you and your students safe on the job. If you are proactive about reaching out to them, they will generously give you their time to help you access the resources you need to be in compliance.

Ask for help even if you think you don’t need it

It’s worth putting that one twice, and it includes asking for help on course development and grant proposal writing. When you are focused on your own work, it can be difficult to review your own materials. Asking a colleague to check over your syllabus, lectures, manuscripts, or proposals can help improve their quality and save you time on revisions later. Be mindful of others’ time, but know that there are faculty who would be happy to mentor you and help you establish yourself.

Level up your time management

In part, this can be achieved by scheduling yourself in ways that make sense in the context of the academic calendar or department preferences. For example, in my current department, faculty prefer to teach Tuesday/Thursday and have meetings Mondays and Fridays. So, I asked to teach M/W/F, and will fill in meetings and advising around it. Teaching tends to interrupt the flow of my day, since I need to prepare before class and handle student queries after it. I find I work better if I stack my responsibilities which deal with communication, brain-storming, or large amounts of interaction into blocks or whole days. That leaves large chunks of uninterrupted time on Tuesdays and Thursdays to write papers, proposals, curricula, or work in the lab, while everyone else is busy with their own teaching.

Image source, Pixabay.

Leave yourself plenty of flexibility in your schedule

Avoid the temptation to schedule things as soon as possible and fill up your calendar. Especially in the first few months, you need to have flexibility in your time such that you can drop everything for a day or two in order to meet a sudden deadline you didn’t know about until it occurred to someone to tell you about it. This includes course proposals to curricula committees, which meet a year in advance of when you would actually teach the course, internal review reports, internal budget reports, and more. Don’t worry that you might delay networking with your new colleagues, people will be eager to meet and collaborate with you, you won’t have any trouble filling your dance card.

Track everything you do

Start immediately, and keep a running list of your efforts and accomplishments. All of them, no matter how small. At your annual reviews, and in particular your three-year and tenure reviews, you need to show what you have been up to and that you have been using your time effectively. You’ll never remember it all trying to write the report all at once, and you are liable to forget the smaller things. For example, in no particular order, here are the heading from my tracking list so far: advising (subset into as primary adviser and as grad committee member), publications, press releases/interviews, presentations, guest lectures, courses developed, courses taught (with number of students), professional development activities, research initiated (including student projects and things under my startup funds), proposals submitted, proposals accepted (a much shorter list), service efforts, and reviewing efforts (manuscripts, grant panels, etc.). When it comes time for me to justify myself, all I have to do is hit the “share” button.

Be kind to yourself

Despite the fact that you have been intensively training for this job for years, when you begin a faculty position you are, in a sense, starting from scratch. Most faculty have to relocate long distances to their new institution, which in itself is very disruptive and time consuming. Your laboratory space is almost always inherited from a previous lab which very likely was not specialized in what you study, and needs to be rearranged, renovated, restocked, and reenvisioned to fit your needs. This can delay your lab work by months, and if you were not provided with a lab space immediately, for years.

Most new faculty also expand their range of methodology and propose to incorporate other aspects into their research. Or, like me, have come from previous positions that were relevant, but perhaps not exactly in the same field, and need to re-acclimate and reassemble current laboratory protocols, which is time consuming. I was trained in rumen microbial ecology, but took detours into soil and indoor/building microbial ecology, as well. Even though I was returning to my primary field of experience with my position at UMaine, I still needed to remind people that I was not, in fact, an indoor microbiologist or even a soil scientist. I addressed this in the opening lines of my cover letter:

How is a rumen, a rhizosphere, and a room like a writing desk?
I have written on all of them.

You are also dropped into a thriving community of people and need to build an entirely new social network. While many faculty and graduate students will know you have arrived and reach out to you, you will need to actively recruit undergrads to your classes and your lab, as undergraduate students are not commonly involved in the interview process and won’t have an idea of your reputation or expertise before you arrive. And social interaction is tiring! You are creating new neural pathways by trying to assimilate to a new social group.

Being a new faculty member is extremely rewarding, but can also be exhausting, especially for those also trying to establish a family as well as a laboratory. Many academics report that they meet their deadlines, but fail to take care of themselves and their health and family suffers as a consequence. Take the opportunity to slow down, even if it’s just taking your laptop to a location with a better view.

View of a wooden deck with forest behind it.

Compost, food security, and social justice

What do compost, food security, and social justice have in common? They are all part of creating sustainable, more localized food systems that benefit the community. Want to know more? Check out the piece I co-wrote for The Conversation, along with two other soil microbe researchers.

City compost programs turn garbage into ‘black gold’ that boosts food security and social justice.” Kristen DeAngelis, Gwynne Mhuireach, Sue Ishaq, The Conversation. June 11, 2020

Dr. Kristen DeAngelis is an Associate Professor who studies microbes in soils, climate change, and human impacts, and Dr. Gwynne Mhuireach, a post-doctoral researcher who studies microbes in soils in the built environment and human health.

Woman dressed in a costume of a dissected cat, to teach a class on Halloween.

Teaching students to give scientific presentations

This semester at UMaine, I’m teaching a section of AVS633/FSN671 Graduate Seminar, for students in the Animal and Veterinary Science and the Food Science and Nutrition grad programs. Naturally, I decided to spice up the course requirements.

In all the presentations I have given; during classes, teaching, as public lectures, guest seminars, and conference proceedings, I’ve faced a great deal of technical and audience-related challenges. There is a wealth of information on the formatting and content aspects of building a scientific presentation, but in my experience, that’s only half the battle. The other half is in being able to accurately and interestingly relay that information to your audience. Even in professional settings, I have faced disruptive technical failures that caused me to alter my talk or have to adjust my narrative, and I have fielded poorly-crafted or poorly-intended questions from my audience, all while trying to maintain my composure.

I felt that this was what the graduate students needed to learn, and in a safe space where it was OK to simply, well, give a bad presentation. To convey this, I put together an introduction to the class (below) and a series of assignments.

The Elevator Speech

Their very first assignment was to stand up, with notes but no slides, and give a 3 minute speech on a topic of their choice. It had to be non-technical, and designed to provide information in an approachable way such that the person stuck on the elevator with you would actually want to hear more. As academics, especially when you are a student, you often get caught up in repeating jargon or with having to explain yourself in highly detailed language to faculty who are training and testing you. You forget how to present your work to someone who has absolutely no background, and only a few minutes worth of attention span to devote to hearing about your very niche research question. To give an effective elevator speech, the students needed to distill only the critical information for someone to follow their line of thinking, and to not get bogged down by extraneous detail.

Peer Presentations and Awkward Audience Questions

For the second assignment of the course, each student was required to give a presentation on their research, their program of study, or a specific topic they were interested in and the relevant research. Due to the number of students and course time allotted, this presentation only needed to be 10 minutes long, but I’ve found it can be more difficult to present your material concisely. The students presented as if to a peer audience, so they could use a certain amount of jargon or introduce methods with minimal explanation. This style of presentation is common in graduate school, and as expected, the students all did incredibly well.

To add a challenge here, I instead focused on the audience (in this case, the rest of the class). The thing about being an audience member that most people never think about, is that you also need to conduct yourself with a certain level of professionalism. It might not be polite to shout a question or snarky response in the middle of a presentation, your comments might seem complementary but are in fact back-handed, or your question might simply be poorly crafted. I have been asked, or been witness to, a lot of poorly-worded audience questions and responses, and I’m not referring to general public audiences, I’m talking about academics who should know better.

To that end, for each student presentation, I gave an index card to another student in the audience to ask or perform during the talk. Participation was voluntary. Some of these are well-meant questions that are simply commonly asked. Others are silly, and some are rude. I didn’t include anything offensive or abusive, but those examples abound. The list is pretty funny, but please, NEVER DO THESE AS A REAL AUDIENCE MEMBER.

  • Ask the speaker if they will be a medical doctor (or veterinarian) after they finish this [research] degree.
  • State that you have a question. Then pose a statement/comment that is not a question.
  • Be on your phone (texting) or overtly not paying attention to the entire presentation.
  • Ask them to explain a simple concept that they covered in their presentation (but that you missed because you weren’t paying attention).
  • Cough or sneeze comically loud, or drop something during the presentation.
  • Ask the speaker how they chose this topic or how they got into this type of research/work. (This seems benign, but can take away from more specific questions during a peer presentation.)
  • Ask if the speaker is familiar with a field/event/discovery that is somewhat related to their presentation but not actually in their presentation.  Example, speaker presents about infectious disease in cattle and you ask them about “cow farts and global warming”.
  • Comment that the speaker looks really young for someone in their position.  Example: “Wow, I thought you were an undergrad! You look really young. I mean, that’s a compliment.”
  • Get up during the presentation and adjust the lights or shades in the room. You don’t have to make them better, just change them.
  • Ask the speaker a multiple part question. They can be simple questions, but ask them all in one, long, run-on sentence.
  • Begin your question with “As a parent,….” even if you are not a parent and the question has nothing to do with being a parent. 
  • Ask the presenter who analyzed their data for them (even if they have already said they analyzed it themselves).
  • Tell the speaker that their method is not valid (but don’t explain why).
  • Tell the speaker: “This was a pretty good presentation. When you have been in grad school a few more years I think you’ll be a really good speaker.”
  • Tell the speaker that this kind of work has been done before and ask what they have done that is unique.
  • Raise your hand to ask a question, but then sit back, squint your eyes, exhale loudly, pause for a moment, then say, “Never mind”.

The Technical Challenge

On multiple occasions, I have had to give a short (10 min) presentation by memory because the slideshow wouldn’t open or advance. I have had poor lighting, or poor color contrasting from the projector, which made it difficult to read my slides. I have had projection screens which were much smaller than I anticipated such that my text was too small to read on figures, and I’ve more or less given up the hope that I will routinely encounter “presenter mode” when using podiums or other people’s machines. I’ve had a projector that kept shorting out during the talk and creating blank screens for 10 seconds, something which you can hear me talk about in the lecture recording but not see on the recorded slides. I’ve had my available time cut in half, had to cut my presentation short because I included too much detail, realized I had poorly organized the presentation of material or forgotten to define a critical aspect, been unable to play videos or animations, had hand-held slide advancers with low batteries, had automatic slide advance turned on by mistake, and more.

When you face these surprises during a talk, you often don’t have the time, never mind the presence of mind, to resolve the problem. You simply have to make the best of it before your time runs out. It helps to know your material, but it also helps to be able to improvise, which is a skill best developed in practice. You might need to fill air time, or reconstruct your presentation on the fly, or make light of the situation to cut the tension in the room. To help my students prepare, I asked them to send me their peer presentation, as I wanted them to use a presentation they had just given and were familiar with. Then, I introduced mistakes into the presentation without disclosing what those might be, only that they would be there.

To think up enough technical problems I could use, I enlisted the help of scientists on twitter. Click on the Tweet below to find the thread and see the other contributions from @HannahMLachance, @canda007, @Wymelenberg, @vaughan_soil, @murphyc1928, @cskrzy, @maria_turfdr, @mcd_611.

I came up with this non-exhaustive list:

  • Replace a video with a still shot
  • Have 2 students make slides on the same topic, then have them present the other one’s slides (to simulate when a co-author gives you some slides on their contribution and you forget what they mean).
  • Reorder some of the slides
  • Remove a lot of the text on the slide
  • Resize images to be too small for audience to see resolution
  • Introduce blank slides to simulate projector connection issues (like screen flickering on/off occasionally)
  • Ppt won’t open at all or won’t advance beyond title slide
  • Change font on all text to tight cursive
  • No ‘presenter mode’ available
  • Resize slide dimensions and don’t adjust proportions to ensure fit
  • Turn laptop around so can’t see screen as if presenting at a podium
  • Add animations to everything
  • Add notification of email on timer (created a shape with animated pop in and out, as well as notification chime).
  • No photos
  • Slide advancer with poor quality batteries
  • Automatic slide advance

Public Presentations

Public presentations are an overlooked part of academia, but a crucial aspect. If you are at a public university, or you receive state or federal funding, your work is being supported by tax dollars. Many federal grants require an outreach or public education portion to your project, where you make the results available to interested parties (called stakeholders). Science communication is also extremely important in bridging the divide between scientific and public communities.

Public presentations need to present information approach-ably. I don’t mean they need to talk down to people, I mean they need to consider that the audience might not have a frame of reference for what you are talking about. I have a PhD, but it’s meaningless if I attend technical lectures on physics. For the third challenge in class, students can give their presentation again but with the knowledge that they can’t throw 20 slides worth of dense information at their audience, they can’t use technical language without defining it, and that sometimes the best way to explain complicated information is using pictures or analogies.

Update: In light of Corvid-19 concerns, campuses have been closing and switching over to remote instruction. This was rather challenging to do well with a presentations class, as giving a webinar isn’t the same as giving a public presentation. To be more creative, I am having students submit their public presentation slides online. I then assign them to another student, who has to annotate the ‘presenter notes’ with the speech of how they would present these slides. I then return the annotated version to the original presenter so they can see how well their slides spoke for themselves. In this “presentation telephone game”, I hope they will see how easy their slides were translatable to someone else, which is a common problem in slides put online without any notes or audio: so much gets lost when the presenter isn’t providing the information and filling in the additional information that is only briefly noted on the slides.

Learning (to Pretend) to Enjoy Giving Presentation

You can’t always control the technical aspects of your talk, or select your audience, or even be prepared for the weather that day. You won’t always be well-rested, or in good health, on the day of. Fun fact about stress, it can trigger spotting or early menstruation. There’s nothing quite as terrifying as being in the middle of your presentation when you are suddenly aware that you have a limited amount of time to get off stage and hope that there are feminine products available for free in the nearest restroom, because your women’s dress pants don’t have pockets for you to carry quarters for the dispensary machines.

You won’t always have time to prepare. Once, I had 5 minutes of notification that I would have to stand up in front of 50 – 75 other college students and Jane Goodall and present a recap on a service-learning course, at a time when I dreaded any and all public speaking. But you can’t really decline the offer to talk in front of Jane Goodall when she had taken the time and effort to be in the room to listen to you all. So you just have to stand up and start talking before you convince yourself you can’t do it.

You can have faith in yourself, know that you will try your best, and remind yourself that it will be good enough. I’ve been an audience member at perfect presentations, and I remember that it went really well and nothing at all about the content. The talks that I remember most are the ones where the speaker connected with me. They were funny, they were humanizing, and they took technical problems and awkward interactions in stride.

The best way to become a better speaker, I think, is to be open to the idea that you are going to mess up. A lot. But each time, you will learn from that experience, you will ask for feedback, and you get back out there. As academics, we have to present information on nearly a daily basis. It is, in fact, a significant part of the job. So instead of dreading it, we should at least pretend to enjoy it until, one day, we find that we do.

Perspective on developing curricula

At the University of Maine, I am currently developing two new courses based on similar material I’ve taught previously at the University of Oregon and Montana State University. I’ve written about several of those classes, including a retrospective after teaching ‘Introduction to Mammalian Microbiomes’ to humanities students. Here, with the spring semester commencing this week, I thought I would share my approaches to developing coursework. While a class doesn’t stand on organizational physique alone, it can go a long way to facilitating your communication with your students, their understanding of course expectations, and their ability to assimilate the information you are disseminating.

Organization of materials

The nature of my teaching means means that I don’t assign readings from a textbook, I curate reading lists for my students from current scientific literature, which changes a little each year. Because of this, and the need for file management, I have a few tricks. First, I have a folder (on my computer and the online teaching tool) specific to readings for that class. I curate the file name with first author, year, and few words from the title so I can keep track of what it is (ex. Zhulin_2015_databases_review). I duplicate that file name in my syllabus, so I can copy and paste instead of writing it out again.

I format my syllabus as a table, and add each reading to the day on which it is assigned. If I move lectures around, I move the whole table row, so I can migrate assignments and readings along with lecture titles. Lastly, because the readings are specific to lecture and date assigned, I mimic that order in my file names by numbering them all instead of leaving them in alphabetic order (ex. 10_Zhulin_2015_databases_review), to facilitate knowing when and which is assigned.

And I don’t just number them by order, I number them by lecture so students or I can just match the lecture number across the lecture files, assigned readings, etc.

Written assignments (when logistically possible)

A stack of papers facedown on a table.

There’s no easy way to grade written assignments from students, but I prefer it to exam-style assessments. Particularly in teaching microbial ecology and sequencing data analysis, there’s not a lot of strict memorization like there is in anatomy. The material lends itself more to critical thinking and debating theory, to presenting a scientific argument, to problem solving, or to composing mock scientific manuscripts. In allowing students the word count to work through their thoughts, they are able to find the words to express their opinion on, say, the Hygiene Hypothesis when only weeks before they didn’t know that some microbes can turn the immune system on or off.

Written assignments allow me to give them feedback, including grammatical corrections, suggestion on sentence structure, pointing out leaps of logic where they left readers behind, and of course, on the strength of the scientific argument. This is particularly helpful when learning to write technical science.

Red pen.
Photo credit: Merriam-Webster

In giving students the agency to choose a topic to write about from the curricula tasting menu I’ve provided in my lectures, I receive back more information than just what I provided, which keeps things interesting for me. And, in giving them assignments which practice their writing voice, I witness their progression towards mature scientific writing.

Stacking assignments for improved retention

It takes time to become familiar with new information. That’s why school subjects are taught multiple times, or in specific orders, as you progress through education. I have 13 – 15 weeks in a semester (or 10 in a quarter!) to on-board students and teach them a skill. For most of the students I have taught, my class is their first introduction, or their first formal introduction, to the subject.

Especially for my host-associated microbial courses, there are hundreds of years-and-counting worth of history which led us to our current understanding of the microbes that inhabit us. Without that history, an explanation of the available technology, and a discussion of how that technology shaped the view we had, I can’t do justice to the majority of the coursework where I explain how we discovered the relationship between salivation and the microbial community geography in your mouth. The first section of my ‘host-associated’ course includes this background information, and a discussion of current technology, which is reiterated when later discussing literature and how technological shortcomings can hamper our understanding of a microbial community.

To give students more time to practice the material, I give related readings, have a guided discussion at the end of lectures, and stack assignments. Students start with a non-technical summary of a paper; 1-ish paragraph where they have to introduce the paper and why it was done, the methods used, and a major result or two. Trying to explain a complex experiment in simple terms is a great way for students to gain familiarity. When it comes time to write a two-page essay for a take-home exam, I allow the students to build off those summaries, if they choose.

An inclusive syllabus

A syllabus is a document which encompasses the important information for the class, including meeting times and rooms, grading policy, lecture and assignment schedule, required reading materials, and more. It can be used to recruit students to sign up for the class, and once in attendance, it’s the first impression students have. It’s where they refer for questions about the course, what’s expected of them, and where to find instructions on assignments. I write my syllabi in a way that makes sense to me, the instructor, and I welcome feedback from students when my instructions are confusing. But, I also welcome feedback from different student populations in order to make the language and presentation of the document more approachable. Sometimes you just need something to break the ice. Like a paper turkey hat.

Sue wearing a paper hat shaped like a turkey.
Wearing the turkey hat that my mentee and I made.

I haven’t actually worn a turkey hat to teach a class, that’s too informal. I dress up like an anatomically-annotated dissected cat, because I’m a professional. Or, I ran regular class discussions that occasionally got heated and were monopolized by a fraction of the class. The next year, I took a stronger moderator stance and would impose more restrictions (“Ok the next comment HAS to use the word “microbes”). I don’t like calling on students, so the next time I have discussions I think I’m going to give them all D20 dice and have them roll for initiative on the order of presenting comments. I also added this to my syllabi:

Class participation: Students are expected to participate in discussions in class.  I strive to create inclusive discussions, but if students still find it challenging to participate please notify me and I will alter the discussion format as needed.

AVS 590 Syllabus spring 2020

Most universities also require text or links to their campus policies, driven by federal, state, or university law. These include a statement about accommodations for disabilities, although many faculty are happy to make accommodations without the student receiving prior approval. I started allowing students to occasionally attend lectures by video conferencing, if they notified me ahead of time. It allowed students who were ill or traveling to keep pace with the material, and I have even remotely conference-videoed in to a student’s laptop to present when I was home sick but didn’t want to cancel class.

New this year, I’ve included text about students missing classes for parenting or caregiving responsibilities, something I don’t currently participate in, so it was not something I thought to include information on until someone else (Jenn Perry) gave me their perspective. Now I have this:

Pregnancy, lactation, and parenting: I am happy to make accommodations for students based on pregnancy, lactation, and parental needs, as well as work with the Office of Equal Opportunities. Maine state and UMaine policy allows students to breastfeed in any space, including in class. If a lactation space is required, please contact E.O. for arrangements.

AVS 590 Syllabus spring 2020

Similarly, a tweet by Dave Baltrus about including inclusive statements such as information for food insecure students led me to add this:

Food insecure? Need clothes? Check out the Black Bear Exchange’s Food Pantry: https://umaine.edu/volunteer/black-bear-exchange/ or Old Town Crossroads Ministry.

AVS 590 Syllabus spring 2020

And finally, I added text about mandatory reporting. As a public university employee, I am obligated to notify the University of Maine Title IX office about criminal actions towards or by anyone on campus. If a student reveals information to me, I have to pass it on to the Title IX office which will then discretely reach out to the student with resources. The office advocates for anyone on campus, but they are particular important in situations involving students who are low on the power scale and cannot advocate for themselves. While my door is always open to students looking for help, I felt it was important for them to know that I might not be able to keep the meeting confidential.

Inclusiveness in the classroom is important to me, because if students don’t feel welcome, comfortable, and free from hunger, they can’t learn. Despite what opponents think, this doesn’t involve “coddling” or “being too soft”. It means being realistic in my expectations about how people learn and what else they are dealing with that might be inhibiting that. It means that I learn to be more proficient at communication and personnel management, which are vital skills for academics. And it means that we all elevate our skills together.

Silhouettes of four people jumping in a dark cave.

Academic commute

To date, I’ve driven just over 7,000 miles to work at academic postings in 4 states. It’s not uncommon to travel long distances to match with the right academic program or job posting, in fact, it can be critical to help you acquire new skills. Almost every researcher I know has made at least one move, and many have traveled transcontinentally or internationally. This highlights the need for moving assistance (without which I could not have afforded to move to a job) as well as immigration policy which is not based on intimidation or discrimination.

For my part, I have effectively moved laterally across North America twice, going nearly coast to coast to coast. Beginning with my bachelor’s and doctorate at the University of Vermont, I moved to Burlington back in 2003 and stayed for 12 years, long enough to catch the travel bug. With my defense impending, I accepted a position at Montana State University in Bozeman, Montana, a drive of roughly 2,600 miles, and lived there for two years with my now-husband, Lee, acquiring a dog in the process.

We drove 2,600 miles to Montana!

While the move to Montana was motivated by my interest in the work and in living out west, my move to the University of Oregon in Eugene, Oregon just two years later was a bit more tinged with financial necessity: in early 2017, it seemed unlikely that my work into the effect of climate change on soil microbes in agricultural fields would continue to be funded by the federal government. Although, they have since funded a project I’m collaborating on, but it took nearly a year to confirm there was actually federal funding available, long after I had left Bozeman.

The actual move from Bozeman to Eugene was a comedy of errors; it was extremely difficult to find affordable housing in Eugene which would allow a dog > 35 lbs, was configured to support our lifestyle, and was located reasonably close to campus (I ended up biking 12 miles a day round trip). By the time we confirmed an apartment just 5 day before our move (which required significant time and financial investment to secure), the larger moving trailers were no longer available and Lee and I ended up each driving a 16 ft truck (mine without air conditioning) for two extremely long days and about 860 miles.

My first day at the University of Oregon.

While we weren’t planning on being done with the west coast so soon, after just two years in Oregon, financial need was spurring a move yet again. In February of 2019, I was notified that there was no longer financial support for my research faculty position and that my contract was being terminated at the end of the month. This, too, is not uncommon in academia. Unless you are academic faculty, chances are that you are soft-money funded, and your salary and the majority of your benefits are paid through grant funding. There is usually a clause in your appointment letter or university policy regarding the minimum amount of time required between notification and termination, but sometimes it can be same day!

Through a combination of research money I had brought in, ad hoc summer teaching, and industry project money, I was able to knit together five months worth of half-time salary. I spent those five months working more than full-time in an effort to look for a new job (a time-intensive effort in academia) and push as many old projects to publication as possible. If I was going to have down time, at least I would use it efficiently to improve my prospects of getting a new job, and ensure that my obligations were met in case it was necessary to take a non-academic job to make ends meet and I no longer had much time for research in my spare time.

While financial need might have put me on the job market, pure serendipity connected me to the University of Maine: an old friend forwarded me the job posting, which I had missed despite all my internet-scouring. The position, the university, and the location were all perfect for me and my family, an alignment which is somewhat rare in academia.

Over 9 days, we drove roughly 3,600 miles on the scenic route along the Transcontinental Highway spanning Canada. We took ferries to an from Victoria Island, walked a beach near Vancouver, drove through the impressive Canadian Glacier National Park to Banff, cruised through grass seas in the Canadian wheat belt, dipped our paws in the Great Lakes region, and drove through the forests and undulating hills of Quebec and western Maine. We are spending the week acclimating on the Maine coast with family, after which we will formally move to Orono with no plans to move back out.

Despite all the mileage that Lee and I have accrued, Izzy has traveled farther! We adopted her in Bozeman, but she was born in a different part of Montana and had moved to Wisconsin and back before she was 2 years old, accruing an estimated 7,100 miles.

Izzy has lived in 4 states and traveled more than 7,100 mi to get there.

Microbes and social equity preprint available!

Framing the discussion of microorganisms as a facet of social equity.

Suzanne L. Ishaq1,2*, Maurisa Rapp2,3, Risa Byerly2,3, Loretta S. McClellan2, Maya R. O’Boyle2, Anika Nykanen2, Patrick J. Fuller2,4, Calvin Aas2, Jude M. Stone2, Sean Killpatrick2,4, Manami M. Uptegrove2, Alex Vischer2, Hannah Wolf2, Fiona Smallman2, Houston Eymann2,5, Simon Narode2, Ellee Stapleton6, Camille C. Cioffi7, Hannah Tavalire8

  1. Biology and the Built Environment Center,  University of Oregon
  2. Robert D. Clark Honors College, University of Oregon
  3. Department of Human Physiology, University of Oregon
  4. Charles H. Lundquist College of Business, University of Oregon
  5. School of Journalism and Communication, University of Oregon
  6. Department of Landscape Architecture, University of Oregon
  7. Counseling Psychology and Human Services, College of Education, University of Oregon
  8. Institute of Ecology and Evolution, University of Oregon

Abstract

What do ‘microbes’ have to do with social equity? On the surface, very little. But these little organisms are integral to our health, the health of our natural environment, and even impact the ‘health’ of the environments we have built. Early life and the maturation of the immune system, our diet and lifestyle, and the quality of our surrounding environment can all impact our health. Similarly, the loss, gain, and retention of microorganisms ⁠— namely their flow from humans to the environment and back⁠ — can greatly impact our health and well-being. It is well-known that inequalities in access to perinatal care, healthy foods and fiber, a safe and clean home, and to the natural environment can create and arise from social inequality. Here, we frame access to microorganisms as a facet of public health, and argue that health inequality may be compounded by inequitable microbial exposure.


In just a four-week course, I introduced 15 undergraduates from the University of Oregon Clark Honors College to microorganisms and the myriad ways in which we need them. More than that, we talked about how access to things, like nutritious foods (and especially fiber), pre- and postnatal health care, or greenspace and city parks, could influence the microbial exposures you would have over your lifetime. Inequalities in that access – such as only putting parks in wealthier neighborhoods – creates social inequity in resource distribution, but it also creates inequity in microbial exposure and the effect on your health.

By the end of the that four weeks, the students, several guest researchers, and myself condensed these discussions into a single paper (a mighty undertaking, indeed).

And now that I’ve found a preprint server that accepts reviews/commentaries, it’s available for preview! The paper is currently under review and will be open-access when eventually published.

During the course, a number of guest lecturers were kind enough to lend us their expertise and their perspective: