The American Society for Microbiology is an internationally recognized scientific society that promotes research, education, and policy related to microbiology in all aspects of our lives. I’ve been a member since 2011, have been to several meetings, and have published several times in ASM journals, and have spent quite a bit of time envisioning how scientific societies can foster the next generation of researchers. And now… I’m on the ballot for an Early-Career At-Large positon on their Board of Directors! If you are a member of ASM, you are able to vote for the next leadership team, whose profiles can be found here, and will have received an email link.
The complete author list, Abstract, and Ackowledgements/Funders portions of the paper can be found at the end of this post. This paper is part of a larger Broccoli project, in which we are evaluating the use of broccoli sprouts in the diet to enlist gut microbes to produce anti-inflammatories as a way to resolve symptoms of Inflammatory Bowel Disease.
The Premise
Broccoli sprouts are very high in a compound called glucoraphanin, which is in-active for humans. When glucoraphanin comes in contact with the myrosinase enzyme, also found in the sprouts, it is transformed into sulforaphane, which drives away insect pests but acts as an anti-inflammatory in people!
If you eat raw sprouts, most of this conversion happens when you cut or chew the sprouts, and that anti-inflammatory will get absorbed in your stomach. If you steam or cook the sprouts, you can inactivate the enzyme and leave the glucoraphanin compound alone. Some of your gut microbes are able to use glucoraphanin, and produce the anti-inflammatory sulforaphane right in your gut! We are trying to understand how and when this works, so we can use it to reduce symptoms of Inflammatory Bowel Disease.
The mice in this trial are used to mimic Crohn’s Disease, which is one of the main ways that Inflammatory Bowel Diseases may be classified. Crohn’s Disease is complictaed, and involves an over-active immune response to gut microbes. This is replicated in mice that are bred to lack the genes in the DNA to make interleukin-10 (IL-10). IL-10 is an immune factor that can be used to calm the immune system and tolerate microbes which are not causing harm. Without IL-10, these mice over-react to the presence of bacteria, even those which are not causing harm, and this creates symptoms similar to Crohn’s in people.
We used two age groups of mice, and in each group, half ate a mouse chow (control) diet and half ate the mouse chow with 10% of the chow replaced by raw broccoli sprouts. Crohn’s often develops in childhood and adolescence, so our two age groups of mice reflect the juvenile stage (4-5 weeks old) and the adolescence stage (5-6 weeks old) of symptom onset. After wo weeks of symptoms, we sacrificed the mice and collected as much information as we could.
The Team
The mice, their care during the experiment, and sample collection for this project was graciously provided by University of Vermont researchers Gary Mawe and Brigitte Lavoie, and then-grad-student-now-medical-student Molly Hurd, in 2021. The SUNY Bingamton team, Tao Zhang and Allesandra Stratigakis, processed metabolite and cytokine samples and analyzed those data. The UMaine team (pictured below and led by Sue Ishaq and Yanyan Li) processed and analyzed data from different locations of gut tissue for histolgy and sequencing of bacterial communities, as well as analyzing those data, and took the lead on writing the paper.
The Health Benefits were most obvious in the younger mice
The mice that were eating the broccoli sprouts in their chow and did much better than the control group who ate only mouse chow when symptoms of Crohn’s Disease were induced — and we found something really interesting… The diet worked really well in the younger mice and reduced their symtpoms of inflammation and illness for almost every metric we studied. The older, adolecent mice got some benefit from eating the raw broccoli sprouts, but not nearly as much as the younger mice! Those graphs are shown in the paper.
The Gut Microbes were most changed in the younger mice
Bacterial richness (the number of different types of bacteria present) was increased, but only in younger mice consuming a 10% raw sprout diet, which is useful because pediatric Crohn’s patients usually have fewer types of bacteria present in their gut.
Younger mice consuming broccoli sprouts also had more types of bacteria that are known to convert glucoraphanin into sulforophane, and they had more of the genes needed to do it. Crohn’s patients usually have fewer of these types of bacteria, which are also known to provide other health benefits.
The Next Steps
We are currently working on replicating and expanding this project to include more age groups, so we can understand how different diet preparations of broccoli sprouts impact immune systems and gut microbiota at different developmental periods of life. We are also really interested in understanding how sex in mice, and gender in humans, plays a role in how immune systems and microbial communities develop during a critical phase of life. We have some initial data to suggest that male and female mice respond to different diets and at differnt ages, but we aren’t sure why yet.
We hope to expand our work with people to study how these diets work in the real world, and how we can tailor diet and cooking preparations of sprouts to best meet the needs of people of different ages, health statuses, and tastes.
Lola Holcomb1$, Johanna M. Holman2$, Molly Hurd3, Brigitte Lavoie3, Louisa Colucci4, Benjamin Hunt5, Timothy Hunt5, Marissa Kinney2, Jahnavi Pathak1, Gary M. Mawe3,Peter L. Moses3,6, Emma Perry7, Allesandra Stratigakis8, Tao Zhang8, Grace Chen9, Suzanne L. Ishaq1*, Yanyan Li1*
1 Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469. 2 School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469. 3 Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401. 4 Department of Biology, Husson University, Bangor, Maine, USA 04401. 5 Department of Biology, University of Maine, Orono, Maine, USA 04469. 6 Finch Therapeutics, Somerville, Massachusetts, USA 02143. 7 Electron Microscopy Laboratory, University of Maine, Orono, Maine, USA 04469. 8 School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790. 9 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA 48109
Crohn’s Disease (CD) is a presentation of Inflammatory Bowel Disease (IBD) that manifests in childhood and adolescence, and involves chronic and severe enterocolitis, immune and gut microbial dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories which could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (w/w) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation with Helicobacter hepaticus, which triggers Crohn’s-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice, and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, e.g., Escherichia coli and Helicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research.
Importance
To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane, and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn’s Disease disrupts the lives of patients, and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.
Acknowledgements: This project was supported by the USDA National Institute of Food and Agriculture through the Maine Agricultural & Forest Experiment Station: Hatch Project Numbers ME022102 and ME022329 (Ishaq) and ME022303 (Li); the USDA-NIFA-AFRI Foundational Program [Li and Chen; USDA/NIFA 2018-67017-27520/2018-67017-36797]; and the National Institute of Health [Li and Ishaq; NIH/NIDDK 1R15DK133826-01] which supported Marissa Kinney, Timothy Hunt, and Benjamin Hunt. Johanna Holman was supported by ME0-22303 (Li), and Lola Holcomb was supported by US National Science Foundation One Health and the Environment (OG&E): Convergence of Social and Biological Sciences NRT program grant DGE-1922560, and the UMaine Graduate School of Biomedical Science and Engineering.
Marissa completed her undergraduate at the University of Maine in 2021, earning a BS in Microbiology and a BS in Cellular/Molecular Biology, and after graduating worked in the field of public health at UMaine’s Margaret Chase Smith Policy Center. She’s been crushing it since joining the lab in early 2023, including contibuting to the two papers listed below, being awarded a One Health and the Environment NRT Fellowship 2023 – 2024 at UMaine, and now, a research award from the Bioscience Association of Maine!!
Lola entered as a rotating first-year GSBSE student in March 2022, and declared the Ishaq Lab her dissertation lab soon after, where she has been performing 16s data analysis for other ongoing lab projects, comparing gut microbiomes of mouse models of Inflammatory Bowel Disease with broccoli as a dietary treatment. Lola was awarded a One Health and the Environment NRT Fellowship 2022- 2024 here at UMaine. She led the data analysis on a paper using a Crohn’s Disease mouse model for innovate diet-microbe research.
Johanna was first author on a paper that was recently published, and contributed to a second paper accepted (details soon)!
Johanna Holman, B.S., M.S.
Doctor of Philosophy student
Johanna joined the lab in fall 2020 to investigate the effects of diet on the gut microbiome, and on host-microbial interactions. For the past several years, she has been working with Drs. Tao Zhang and Yanyan Li, and her project will combine her previous work on the nutritional biochemistry of broccoli with effects on gut microbes. She obtained her master’s in nutrition in summer 2022, and returned to the Ishaq and Li labs for her PhD! She won the 2022 Norris Charles Clements Graduate Student Award and the 2020-2021 University of Maine Graduate Student Employee of the Year. She led a large mouse project which was recently published, and led much of the lab work for a second paper that was just accepted.
Alexis is returning soon as PhD student in Microbiology!
Alexis Kirkendall
Undergraduate Researcher
Alexis is from Ohio and is about to graduate a semeser early in Biology at Heidelberg University. She joined the lab through the Summer 2022 REU, continued her work remotely, and returned to Maine in summer 2023 as a research assistant for several projects related to gut microbes, diet, and Inflammatory Bowel Disease. She was just accepted into the microbiology program at UMaine!!
Esther joined the lab!
Esther Alaba
Doctorate of Philosophy candidate
Esther has won several awards for combining mechanistic and functional tools to investigate dietary interventions in managing metabolic diseases. Her teaching experience includes Basic Physiology, Anatomy, and Experimental Physiology courses. She is passionate about Girls’ Education and Empowerment and currently mentors several young women towards successful career development.
Her desire to utilize bioinformatics tools for nutritional therapy brought her to Ishaq’s lab. She currently works on human and mouse data to identify the microbiome and metabolomic pathways involved in the ameliorative effects of broccoli sprouts during IBD.
This paper is part of a larger Broccoli project, in which we are evaluating the use of broccoli sprouts in the diet to enlist gut microbes to produce anti-inflammatories. You can read about the whole project here, with links to other resources.
The Premise
Designed by Johanna Holman
Broccoli sprouts are very high in a compound called glucoraphanin. When glucoraphanin comes in contact with the myrosinase enzyme, also found in the sprouts, it is transformed into a compound that acts an an anti-inflammatory in people!
If you eat raw sprouts, this conversion happens when you cut or chew the sprouts, and that anti-inflammatory will get absorbed in your stomach. If you steam or cook the sprouts, you can inactivate the enzyme and leave the glucoraphanin compound alone. Some of your gut microbes are able to use the compound, and produce the anti-inflammatory right in your gut! We are trying to understand how and when this works, so we can use it to reduce symptoms of Inflammatory Bowel Disease.
The Mouse work
In the winter of 2020-2021, we ran a 40-day study with 40 mice housed at UMaine. The mice were divided into 4 groups: “control” which ate the mouse chow, “control+DSS” which ate the mouse chow and had colitis induced by adding DSS (a salt laxative) to their drinking water, “broccoli” which ate the mouse chow with steamed broccoli sprouts mixed in, and “broccoli+DSS” which ate the mouse chow/steamed broccoli sprouts diet and had colitis induced by adding DSS (salt laxative) to their drinking water. This work was led by Johanna Holman, who was a master’s student at the time; Lousia Colicci, who was an undergrad at Husson University at the time and is applying to medical schools now; Dorein Baudewyns, who was an undergrad at Husson University at the time and is completing a graduate program in Psychology at UMaine; and Joe Balkan, who was completing his senior year of high school at the time and has since begin an undergrad degree in Biology at Tufts University where he is preparing for medical school.
Johanna Holman, graduate researcher in the Ishaq LabLouisa Colucci.Dorien Baudewyns, undergraduate researcher at Husson UniversityJoe Balkan, undergraduate researcher at Tufts University, performing culturing of bacteria at the anaerobic chamber.
The mice were weighed regularly and fecal samples assessed for blood (signs of colitis). At the end of the study, the mice were euthanized so we could study the bacteria in parts of the intestines that we can’t access in humans. We used as few mice as possible, and got as much information from this study as possible, to do as much good as we can with their sacrifice.
The Health Benefits
As we’d hoped, the broccoli+DSS mice that were eating the broccoli sprouts that were given colitis did much better than the control+DSS group who ate mouse chow during their colitis. The broccoli+DSS mice were able to keep gaining weight as they grew, had better consistency of their stool, and had lower amounts of proteins and other metabolities in their blood which indicate inflammation (lower cytokines and lipocalin). Those graphs are shown in the paper.
The Gut Microbes
We found a lot of interesting things with the microbial communities that were living in different parts of the intestines, but the most exciting was that broccoli sprouts in the diet helped microbial communities stay alive in their original gut locations even during colitis! Certain microbes like to live in particular places in our intestines based on where different ingredients in our diet get processed, or the local environment (like how acidic the intestinal neighborhood is), and this is called biogeography.
In the graph below, our control group mice (eating chow) or the broccoli group (eating chow plus sprouts), we see that microbial communites in the small intestines clustered away from the microbial communities in the large intestines.
The DSS salt laxative, and ulcerative colitis, wreak havoc on gut microbes because they cause physical damage to the lining of the intestine, which where many microbes that can be useful to us live on or near. When we induced colitis in mice that were eating mouse chow (control+DSS group), the damage to the intestines caused a loss to some of the microbes living in different places. The remaining microbes that could survive these tough conditions were basically the same ones regardless of where we we looked in the intestines.
But, if mice had colitis and were eating broccoli sprouts (broccoli+DSS), the microbes were able to survive in their original locations and preserved biogeography! This is important because where microbes live in the gut may determine if the beneficial things they make can help resolve IBD symptoms in specific locations in the gut.
Image by Johanna Holman, graph from the paper.
The Spatial Location of GLR-digesting-genes
Bejamin and Timothy Hunt are undergraduates in Biology who have been working on bioinformatics in the Ishaq Lab since December 2022 after completing Sue’s DNA Sequencing Data Analysis Class. They joined the DSS project to provide in-depth analysis on some of the sequences which matched bacteria that are known to convert GLR into the anti-inflammatory SFN, as well as analyze data comparing numbers of genes known to be involved in the process.
Cropped figure from the paper, made by Benjamin and Timothy.
Benjamin Hunt
The study of the bioproduction of SFN and its mucosal and luminal activity benefited from the biogeographical analysis of this study. It was interesting to note the extreme dominance of a Bacteroides species in the broccoli treatments. B. thetaiotaomicron was indicated based on BLASTN analysis and an evaluation of matching species but was not directly suggested by the dada-Silva taxonomy assignment. The indication of B. thetaiotaomicron suggested analyzing the presence of the operon BT2159-BT2156, which was generally minimally present (<100) but at relatively high counts (>100,000) in some samples. Significantly, the operon was found at locations where no Bacteroides were identified. We continue to reflect on the similarities and differences in the biogeography of bacterial abundance and operon presence highlighted in the different treatments of this study.
Benjamin and Timothy Hunt
The Next Steps
As part of this project, we cultured hundreds of bacteria from the intestines of mice to try and isolate some of the ones that turn glucroraphanin into sulforaphane. We have a large team of students and researchers participating on the culturing work, some of whom are pictured here. We’ll be providing plenty of updates on that project as we continue to process the bacteria this fall!
Johanna M. Holman1, Louisa Colucci2, Dorien Baudewyns3, Joe Balkan4, Timothy Hunt5, Benjamin Hunt5, Marissa Kinney1, Lola Holcomb6, Allesandra Stratigakis7, Grace Chen8, Peter L. Moses9,10, Gary M. Mawe9, Tao Zhang7, Yanyan Li1*, Suzanne L. Ishaq1*
1 School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469 2 Department of Biology, Husson University, Bangor, Maine, USA 04401 3 Department of Psychology, University of Maine, Orono, USA 04469 4 Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA 02155 5 Department of Biology, University of Maine, Orono, Maine, USA 04469 6 Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469 7 School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790 8Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA 481099Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 0540110 Finch Therapeutics, Somerville, Massachusetts, USA 02143
Abstract: Inflammatory Bowel Diseases (IBD) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective, and affordable, for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin, and can be metabolized by certain mammalian gut bacteria into anti-inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin-metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet, and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis. We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal- and mucosa-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, including significantly more weight gain, lower Disease Activity Indexes, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location, but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, this supports the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS.
Importance: Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone, and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate induced colitis, that colitis erases biogeographical patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Acknowledgements: All authors have read and approved the final manuscript. The authors thank Jess Majors, University of Maine, for her kind and detailed care of the mice during the trial, and for Ellie Pelletier for her informal review of the manuscript. This project was supported by the USDA National Institute of Food and Agriculture through the Maine Agricultural & Forest Experiment Station: Hatch Project Numbers ME022102 and ME022329 (Ishaq) and ME022303 (Li) which supported Johanna Holman; the USDA-NIFA-AFRI Foundational Program [Li and Chen; USDA/NIFA 2018-67017-27520/2018-67017-36797]; and the National Institute of Health [Li and Ishaq; NIH/NIDDK 1R15DK133826-01] which supported Marissa Kinney, Timothy Hunt, and Benjamin Hunt. Lola Holcomb was supported by US National Science Foundation One Health and the Environment (OG&E): Convergence of Social and Biological Sciences NRT program grant DGE-1922560, and through the UMaine Graduate School of Biomedical Sciences and Engineering.
I’ve been a researcher since Juy 2010, when I started graduate school, and my first peer-reviewed journal article was accepted in 2012. This summer, I reached 50 peer-reviewed publications, including research papers and reviews. Since I started publishing, I’ve been in grad school, two one-year postdoc positions, one two-year research assistant professor position, and one four-year-and-counting assistant professor position, and my research areas of focuses have shifted 5 or 6 times since then to keep pace with the job I was in at the time. To capture that diversity, I made a word cloud of my publication list, including authors, titles, and journal names:
Top keywords:
Unsurprisingly, most of my top keywords include the microbes I’m focusing on (bacterial), the animals I’ve worked with (moose, Alces), the sample types I’ve worked with (rumen, soil), and the methodology I use (seqeuencing).
Top co-authors:
None of this would have been possible without hundreds of researchers that I have worked with over the years. Here are a few of the names that pop up in theat wordcloud because I have published so often with them:
Carl Yeoman, Montana State University, who was my post-doc advisor for a year and who I’ve continued to publish with on various projects. We’ve co-authored 11 papers!!
Andre Wright, my PhD avisor, who has since moved into non-research roles, also with 11 co-authored papers!!
Fabian Menalled, Montana State University, who was my post-doc advisor for a year and who I collaborated with for many years on projects which sprung from that first year. We have 7 co-authoured papers!
Jean MacRae, University of Maine, and I have collaborated on a handful of different projects since I joined UMaine and have co-authored 4 papers with another currently in review.
Full list of Research Articles (38) and Reviews (12):
1 undergraduate student I mentored, 2 graduate student I mentored
Robinson, J.M., Redvers, N., Camargo, A., Bosch, C.A., Breed, M.F., Brenner, L.A., Carney, M.A., Chauhan, A., Dasari, M., Dietz, L.G., Friedman, M., Grieneisen, L., Hoisington, A.J., Horve, P.F., Hunter, A., Jech, S., Jorgensen, A., Lowry, C.A., Man, I., Mhuireach, G., Navarro-Pérez, E., Ritchie, E.G., Stewart, J.D., Watkins, H., Weinstein, P., and Ishaq, S.L. 2022.Twenty important research questions in microbial exposure and social equity. mSystems7(1): e01240-21.Special Series: Social Equity as a Means of Resolving Disparities in Microbial Exposure. (review)
Ishaq, S.L., Parada, F.J., Wolf, P.G., Bonilla, C.Y., Carney, M.A., Benezra, A., Wissel, E., Friedman, M., DeAngelis, K.M., Robinson, J.M., Fahimipour, A.K., Manus, M.B., Grieneisen, L., Dietz, L.G., Pathak, A., Chauhan, A., Kuthyar, S., Stewart, J.D., Dasari, M.R., Nonnamaker, E., Choudoir, M., Horve, P.F., Zimmerman, N.B., Kozik, A.J., Darling, K.W., Romero-Olivares, A.L., Hariharan, J., Farmer, N., Maki, K.A., Collier, J.L., O’Doherty, K., Letourneau, J., Kline, J., Moses, P.L., Morar, N. 2021. Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice. mSystems 6:4. Special Series: Social Equity as a Means of Resolving Disparities in Microbial Exposure. (review)
Zeng, H., Safratowich, B.D., Liu, Z., Bukowski, M.R., Ishaq, S.L. 2021. Adequacy of calcium and vitamin D reduces inflammation, β-catenin signaling, and dysbiotic Parasutterella bacteria in the colon of C57BL/6 mice fed a Western-style diet. Journal of Nutritional Biochemistry 92: 108613.Article.
Horve1, P.F., Dietz, L., Ishaq, S.L., Kline, J., Fretz, M., Van Den Wymelenberg, K. 2020. Viable bacterial communities on hospital window components in patient rooms. PeerJ 8:e9580.
Ishaq, S.L., Seipel, T., Yeoman, C.J., Menalled, F.D. 2020. Dryland cropping systems, weed communities, and disease status modulate the effect of climate conditions on wheat soil bacterial communities. mSphere 5:e00340-20.
Garcia-Mazcorro, J., Ishaq, S.L., Avila-Jaime, B., Rodriguez-Herrera, M.V., Kawas, J.R., Nagaraja, T.G. 2020. Are there any native Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal 14(1):22-30. (review)
Ishaq, S.L., Seipel, T., Yeoman, C.J., Menalled, F.D. 2020. Soil bacterial communities of wheat vary across the growing season and among dryland farming systems. Geoderma 358(15):113989.
Ishaq, S.L., Rapp1, M., Byerly1, R., McClellan1, L.S., O’Boyle1, M.R., Nykanen1, A., Fuller1, P.J., Aas1, C., Stone1, J.M., Killpatrick1, S., Uptegrove1, M.M., Vischer1, A., Wolf1, H., Smallman1, F., Eymann1, H., Narode1, S., Stapleton, E., Cioffi, C.C., Tavalire, H. 2019. Framing the discussion of microorganisms as a facet of social equity in human health. PLoS Biology 17(11): e3000536. Microbiomes Across Systems special issue. Article. (review)
Velazquez1, S., Griffiths1, W., Dietz, L., Horve1, P., Nunez1, S., Hu, J., Shen, J., Fretz, M., Bi, C., Xu, Y., Van Den Wymelenberg, K.G., Hartmann, E.M., Ishaq, S.L.2019. From one species to another: A review on the interaction of chemistry, microbiology, and occupancy in the built environment. Indoor Air 26(6):875-1049. (review). Top 10% most downloaded papers from 2018 – 2019, and 2019 – 2020.
Velazquez1, S., Bi, C., Kline, J., Nunez1, S., Corsi, R., Xu, Y., Ishaq, S.L. 2019. Accumulation of di-2-ethylhexyl phthalate from polyvinyl chloride flooring into settled house dust and the effect on the bacterial community. PeerJ 7:e8147.
Stenson, J., Ishaq, S., Laguerre, A., Loia, A., MacCrone1, G., Mugabo, I., Northcutt, D., Riggio, M., Barbosa, A., Gall, E., Van Den Wymelenberg, K. 2019. Occupant Experience of a Mass Timber Office Building: Monitored and Perceived. Buildings 9:142.
Seipel, T., Ishaq, S.L., Menalled, F.D. 2019. Agroecosystem resilience is modified by management system via plant–soil feedbacks.Basic and Applied Ecology 39:1-9.
Ishaq, S.L., Lachman2, M.M., Wenner, B.A., Baeza, A., Butler, M., Gates, E., Olivo, S., Buono Geddes, J., Hatfield, P., Yeoman, C.J. 2019. Pelleted-hay alfalfa feed increases sheep wether weight gain and rumen bacterial richness over loose-hay alfalfa feed. PLoS ONE 14(6): e0215797.
Ishaq, S.L., Page, C.M., Yeoman, C.J., Murphy, T.W., Van Emon, M.L., Stewart, W.C. 2019. Zinc-amino-acid supplementation alters yearling ram rumen bacterial communities but zinc sulfate supplementation does not. Journal of Animal Science 97(2):687-697.
Horve1, P.F., Lloyd1, S., Mhuireach, G.A., Dietz, L., Fretz, M., MacCrone1,G., Van Den Wymelenberg, K., Ishaq, S.L.2019. Building Upon Current Knowledge of Indoor Microbiology to Construct the Next Era of Research into Microorganisms, Health, and the Built Environment. Journal of Exposure Science and Environmental Epidemiology 30:219–235. Healthy Buildings special issue. (review)
Yeoman, C.J. and Ishaq, S.L.*, Bichi, E., Olivo, S.K., Lowe, J., Aldridge, B.M. 2018. Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal tract. Scientific Reports 8:3197. *authors contributed equally. Article
Seshadri, R., Leahy, S.C., Attwood, G.T., The, K.H., Lambie, S.C., Eloe-Fadrosh, E., Pavlopoulos, G., Hadjithomas, M., Varghese, N., Hungate1000 project collaborators, Perry, R., Henderson, G., Creevey, C.J., Terrapon, N., Lapebie, P., Drula, E., Lombard, V., Rubin, E., Kyrpides, N., Henrissat, B., Woyke, T., Ivanova, N., Kelly, W.J. 2018.Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nature Biotechnology 36:359-367.
Zeng, H., Ishaq, S.L., Liu, Z., Bukowski, M. 2018. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet. Journal of Nutritional Biochemistry 54:18-27.
Ishaq, S.L., AlZahal, O., Walker, N., McBride, B. 2017. Modulation of sub-acute ruminal acidosis by active-dry yeast supplementation and its effect on rumen fungal and protozoal populations in liquid, solid, and epimural fractions.Frontiers in Microbiology 8:1943.
Ishaq, S.L., Yeoman, C.J, Whitney, T.R. 2017. Effects of ground redberry juniper and urea in DDGS-based supplements on ewe lamb rumen microbial communities. Journal of Animal Science 95(10):4587-4599.
Perea1, K., Perz, K., Olivo, S.K., Ishaq, S.L., Williams, A., Lachman, M., Thompson, J., Yeoman, C.J. 2017. Feed efficiency phenotypes involve changes in ruminal, colonic, and small intestine-located microbiota. Journal of Animal Science 95(6):2585-2592.
Ishaq, S.L., Johnson, S.P., Miller, Z.J., Lehnhoff, E.A., Olivo, S.K., Yeoman, C.J., Menalled, F.D. 2017. A living soil inoculum increases soil microbial diversity, crop and weed growth using soil from organic and conventional farms in northeastern Montana. Microbial Ecology 73: 417.
Ishaq, S.L. 2017. Plant-Bacteria Interactions in Agriculture and the Use of Farming Systems to Improve Diversity and Productivity. AIMS Microbiology 3(2): 335-353. (review)
Feng, W., Minor, D., Liu, M., Li, J., Ishaq, S.L., Yeoman, C., Lei, B. 2016. Null Mutations of Group A Streptococcus Orphan Kinase RocA: Selection in Mouse Infection and Comparison with CovS Mutations in Alteration of in vitro and in vivo Protease SpeB Expression and Virulence. Infection and Immunity 25:30-36.
Zeng, H., Ishaq, S.L., Zhao, F-Q., Wright, A-D.G. 2016. Colonic inflammation accompanies an increase of b-catenin signaling Lachnospiraceae/Streptococcaceae in the hind-gut of high-fat diet-fed mice. Journal of Nutritional Biochemistry 35:30-36.
Salgado-Flores, A., Hagen, L.H., Pope, P.B., Ishaq,S.L., Wright, A-D.G., Sundset, M.A. 2016. Intake of a lichen-based diet altered the rumen and cecum microbial profiles in Norwegian reindeer (Rangifer tarandus tarandus). PLoS ONE 11(5).
Ishaq, S.L., Moses, P.L., Wright, A-D.G. 2016. The pathology of methanogenic archaea in human gastrointestinal disease. In: The Gut Microbiome – Implications for Human Disease. Mozsik, G. (ed.). InTech. Pp. 19-37. (review)
Ishaq, S.L., Kim1, C.J., Reis1, D.,Wright, A-D.G. 2015. Fibrolytic bacteria isolated from the rumen of North American moose (Alces alces) and their potential as a probiotic for ruminants. PLoS ONE 10:12.
Ishaq, S.L., Sundset, M.A., Crouse, J., Wright, A-D.G. 2015. High-throughput DNA sequencing of the moose rumen from different geographical locations reveals a core ruminal methanogenic archaeal diversity and a differential ciliate protozoal diversity. Microbial Genetics 1(4):mgen.0.000034.
Ishaq, S.L., Wright, A-D.G. 2015. Wild Ruminants. In: Rumen Microbiology – Evolution to Revolution. AK Puniya, R Singh, DN Kamra (eds). Springer India. Pp. 37-45. (review)
St-Pierre, B., Cersosimo, L.M., Ishaq, S.L., Wright, A-D.G. 2015. Toward the identification of methanogenic archaeal groups as targets of methane mitigation in livestock animals. Frontiers in Microbiology 6:776. (review)
Ishaq, S.L., Wright, A-D.G. 2014. Design and validation of four new primers for next-generation sequencing to target the 18S rRNA gene of gastrointestinal ciliate protozoa. Applied and Environmental Microbiology 80(17):5515-5521.
Ishaq, S.L., Wright, A-D.G. 2014. High-throughput DNA sequencing of the ruminal bacteria from moose (Alces alces) in Vermont, Alaska, and Norway. Microbial Ecology 68(2):185-195.
Ishaq, S.L., Wright, A-D.G. 2012. Insight into the bacterial gut microbiome of the North American moose (Alces alces). BMC Microbiology 12:212.
It feels like the summer semester just began, and here we are, already preparing for fall classes! There has been so much going on in the lab that I wasn’t able to keep up with regular posts, so here are some of the highlights.
Conferences
I attended four symposia/conferences this summer, starting with the virtual MSE 2023 summer symposium in early June, featuring 4 days of invited talks organized around themes, and a 5th day featuring contributed short talks (something new we tried this year). The whole week was fantastic and sparked thoughtful conversation on the using of microbial communities to reduce disparities in positive and negative health outcomes, living conditions, and more. You can find the recorded content on the symposium event page.
Next, I went to the Microbiome Day at Boston University in early July in Boston, MA, where I gave the keynote talk.
I went to the annual meeting for the American Society for Nutrition in Boston, MA in mid-July, where PhD students Johanna Holman, Lola Holcomb, and master’s student Marissa Kinney all presented posters, and most of the lab was able to make it to a puzzle quest at Boda Borg.
And, I went to the Ecological Society of America annual meeting in Portland, OR in August to present some recent work on scallop larval rearing tanks and the bacterial communities we found there. That included an unexpected effect of coastal water dynamics and the phase of the moon. That work has recently been published.
The lab has been bustling all summer as we work on several projects. Master’s student Ayodeji Olaniyi has been working on a project to identify Vibrio bacteria isolated from the sides of scallop larvae hatchery tanks, as part of a larger project investigating microbial communities in hatcheries.
Marissa and visiting postdoc Gloria Adjapong have been preparing a 16S rRNA sequencing library for hundreds of scallop tank biofilm samples we collected last year, although I don’t have any photos of that.
Johanna has been leading a team of students (Alexis Kirkendall, Lilian Nowak, Aakriti Sharma, and Jaymie Sideaway) on a culturing project to screen hundreds of bacterial isolates that were collected from the gastrointestinal tracts of mice eating borccoli sprouts. We are testing them for their capacity to metabolize different glucosinolates into anti-inflammatory compounds, as well as grow on different media types. In the process, we found that the bacteria we are using as a positive control likes to move from one test well to another when its favorite media is available — but not when glucose is present.
Looking ahead to fall
This fall, the lab will be supporting Ayodeji to write and defend his thesis, as he is currently looking for research/technician jobs. His thesis focuses on Vibrio bacteria in scallop larvae hatcheries.
We’ll also be preparing to welcome Alexis back as a graduate student in January 2024, to continue her work on bacteria isolated from mice eating broccoli sprouts.
Our paper was published in Aquaculture Reports, on identifying the bacteria associated with wild and hatchery-raised Atlantic sea scallop larvae, and the biofilms in larval tanks in a hatchery! For the past few years, I’ve been part of a state-wide collaboration between researchers, industry professionals, and educators all working together to understand and improve Atlantic sea scallop hatchery production. To our knowledge, this is the first study to identify bacteria in Atlantic sea scallops, and even though it was a very small project we hope it will lead to a much larger, mult-year project to investigate this in more detail.
Sarah Hosler, ASM 2022.
Scallops are a diverse animal group of marine bivalve mollusks (family Pectinidae) with global distribution in coastal waters, and Atlantic deep-sea scallops, Placopecten magellanicus, are found along the eastern coast of the United States and Canada. Scallops’ reproductive potential and industry demand make them a prime target for hatchery- and farm-based production, and this has been successfully achieved in bay scallops, but not in sea scallops. Currently, hatcheries collect wild sea scallop adults, or maintain cultured broodstocks, and spawn them in their facilities with the intention of forming a plentiful population to grow to adulthood, spawn, and sell to create a sustainable production cycle while also reducing disruption to the scallops’ natural habitat.
Unfortunately, in sea scallop hatcheries the last two weeks of the larval maturation phase, the veliger-stage, is plagued by large mortality events, going from 60 million sea scallop larvae down to several thousand individuals in a span of 48 hours. Survival of clutches to maturity remains very low, with an industry-standard rate around 1%. This drastic winnowing of larvae reduces the availability of cultured sea scallop spat for farmers, forcing sea scallop farms to rely almost exclusively on sea scallop spat collected from wild populations for stock and is seen as a bottleneck for growth of the industry and achieving sustainable harvests. Hatchery larval die-off is well-demonstrated not to be caused by inadequate diet, lighting, temperature, or atmospheric pressure in aquaculture facilities compared to wild conditions.
This project wanted to know if there was any clue in the bacteria that associate with larvae, or with the tanks they are in. In particular, hactcheries are worried about certain species of bacteria in the genus Vibrio, as they can cause disease to scallops and/or people, but it is tricky to study them because there are many species which do nothing at all. This project is part of another experiment to examine some of the Vibrio we found in tanks.
We sampled from some wild larvae, hatchery larvae, and from tank biofilms to indentify what was there. There were two styles of tank setup, and we collected from used tanks as well as tanks after they had been cleaned and refilled with filtered seawater.
Veliger-stage Atlantic sea scallop larvae (Placopecten magellanicus) were obtained from hatchery tanks in Beals, Maine and from the wild off the coast of Cape Elizabeth, Maine. Swabs of hatchery tank biofilms were collected before and after tank cleaning. Bacterial communities were identified using DNA extraction and 16S rDNA sequencing on wild veligers, hatchery veligers and biofilm swabs. Image created with biorender.
One of the surprising things we found, was that the bacterial communities in biofilms along the sides of larvae tank were more similar to each other (clustering) when samples were collected during the same phase of the lunar cycle. Bacterial richness and community similarity between tank samples fluctuated over the trial in repeated patterns of rise and fall, which showed some correlation to lunar cycle where richness is high when the moon is about 50% and richness is low during new and full moon phases. This may be a proxy for the effects of spring tides and trends in seawater bacteria and phages which are propagated into hatchery tanks. The number of days since the full moon was significantly correlated with bacterial community richness in tanks: low during the full moon, peaking ~ 21 days after the full moon, and decreasing again at the next full moon.
Fig. 7. Constrained ordination of bacterial communities in tank samples. Each point represents the bacterial community from one sample.Similarity between samples was calculated using Distance-based Redundancy Analysis (dbDRA), and significant model factors (anova, p < 0.01) are displayed with arrow lengths relative to their importance in the model (f value). The shape of points indicates whether swabbing was either immediately after filtered seawater has been used to fill the tank (cleaned, refilled) or 48 hours after (dirty, drained). Tank setup indicates if water was static, constantly filtered and recirculated in a flow-through system, or setup information was not available (n/a).
These results along with future work, will inform hatcheries on methods that will increase larval survival in these facilities, for example, implementing additional filtering or avoiding seawater collection during spring tides, to reduce certain bacterial taxa of concern or promoting a more diverse microbial community which would compete against pathogens.
Authors: Suzanne L. Ishaq1*, Sarah Hosler1, Adwoa Dankwa1, Phoebe Jekielek2, Damian C. Brady3, Erin Grey4,5, Hannah Haskell6, Rachel Lasley-Rasher6, Kyle Pepperman7, Jennifer Perry1, Brian Beal8, Timothy J. Bowden1
Affiliations:1School of Food & Agriculture, University of Maine, Orono ME 044692 Ecology and Environmental Sciences, University of Maine, Orono ME 044733 School of Marine Sciences, Darling Marine Center, University of Maine, Walpole ME 045734 School of Biology and Ecology, University of Maine, Orono ME 044695 Maine Center for Genetics in the Environment, University of Maine, Orono ME 044696 Department of Biological Sciences, University of Southern Maine, Portland ME 041037 Downeast Institute, Beals, ME 046118 Division of Environmental & Biological Sciences, University of Maine at Machias, Machias, ME 04654
Abstract
Atlantic sea scallops, Placopecten magellanicus, are the most economically important marine bivalves along the northeastern coast of North America. Wild harvest landings generate hundreds of millions of dollars, and wild-caught adults and juvenile spat are increasingly being cultured in aquaculture facilities and coastal farms. However, the last two weeks of the larval maturation phase in hatcheries are often plagued by large mortality events. Research into other scallop- and aquacultured-species point to bacterial infections or altered functionality of microbial communities which associate with the host. Despite intense filtering and sterilization of seawater, and changing tank water every 48 hours, harmful microbes can still persist in biofilms and mortality is still high. There are no previous studies of the bacterial communities associated with the biofilms growing in scallop hatchery tanks, nor studies with wild or hatchery sea scallops. We characterized the bacterial communities in veliger-stage wild or hatchery larvae, and tank biofilms using the 16S rDNA gene V3-V4 region sequenced on the Illumina MiSeq platform. Hatchery larvae had lower bacterial richness (number of bacteria taxa present) than the wild larvae and tank biofilms, and hatchery larvae had a similar bacterial community (which taxa were present) to both wild larvae and tank biofilms. Bacterial richness and community similarity between tank samples fluctuated over the trial in repeated patterns of rise and fall, which showed some correlation to lunar cycle that may be a proxy for the effects of spring tides and trends in seawater bacteria and phages which are propagated into hatchery tanks. These results along with future work, will inform hatcheries on methods that will increase larval survival in these facilities, for example, implementing additional filtering or avoiding seawater collection during spring tides, to reduce bacterial taxa of concern or promote a more diverse microbial community which would compete against pathogens.
Acknowledgements
The authors would like to thank the staff at the Downeast Institute for supporting the development and implementation of this project, as well as for financially supporting the DNA sequencing; Meredith White of Mook Sea Farm for sharing her expertise and collecting biofilm samples; the Darling Marine Center for sharing their expertise and collecting biofilm samples; and the Sea Scallop Hatchery Implementation (Hit) Team for their expertise, review of this work, and funding support, who are financially supported by the Atlantic States Marine Fisheries Commission and Michael & Alison Bonney. The authors thank Lilian Nowak for assistance with related lab work to this project, and the Map Top Scholars Program for related financial support. The authors also thank Nate Perry for helping us collect wild scallop larvae. All authors have read and approved the final manuscript. This project was supported by the USDA National Institute of Food and Agriculture through the Maine Agricultural & Forest Experiment Station, Hatch Project Numbers: ME0-22102 (Ishaq), ME0-22309 (Bowden), and ME0-21915 (Perry); as well through NSF #OIA-1849227 to Maine EPSCoR at the University of Maine (Grey). This project was supported by an Integrated Research and Extension Grant from the Maine Food and Agriculture Center, with funding from the Maine Economic Improvement Fund.
The lab is pelased to welcome back Alexis Kirkendall for the next six weeks to help us with a large-scale culturing project! Alexis is planning to graduate in December, and is in the process of applying to graduate programs here at UMaine so she can join the lab full-time in January!
Alexis Kirkendall
Undergraduate Researcher, Biology, Heidelberg University
Alexis is from Ohio and is majoring in Biology at Heidelberg University. Her research interests are in genetics and she has a love for the fascinating world of microbes. She originally joined the lab through the Summer 2022 REU, and has been working remotely on a few projects in the past year.
Last year, Alexis built skills in microbiology, microscopy, and molecular genetics. This year, she’ll be helping us screen hundreds of bacteria for their ability to grow on certain media and, hopefully, produce anti-inflammatories. This is part of the larger Broccoli Project.
Because of the large number of samples, we are using a robotic liquid handler to dispense culture media and bacterial cells into 96-well plates, that we can later look for growth in. We’ll also be using the anaerobic chamber to grow these bacteria on agar plates to see what their colonies look like, and to grow more of them for additional experiements.
Designed by Johanna Holman
While visiting the Microbe Musuem in Amsterdam recently, Alexis got me a tardigrade (middle) to join the chalmydia (left) and methicillin-resistant Staphylococcus aureus (right, which she got me last year) in my office!
Scallop microbes and sustainable aquaculture: host-microbe dynamics situated in environmental and social context.
Presentation ID: 1372900
Session Information
Session Title: Microbes as Tools to Solve Ecological Problems for All Session Type: Inspire Session Date: Thursday August 10, 2023 Session Time: 3:30 PM – 5:00 PM Pacific Time
Authors: Suzanne L. Ishaq1
Affiliations: 1 University of Maine, School of Food and Agriculture, Orono, ME 04469 USA
Atlantic sea scallop (Placopecten magellanicus) is the second largest fishery in Maine, primarily through wild harvest. Farming is a promising way to meet year-round market demands, create jobs, and reduce ecological impacts of harvest, but relies on wild-caught juveniles as larval survival in hatcheries is low for unknown reasons. My collaborative research group explores the role of larval and tank microbiomes in hatcheries compared to wild scallop veligers. In addition to basic and applied microbiome research, the research team meets with industry partners weekly to discuss results, trends, generate real-world-problem-driven project designs, and collaborate on research, education, and student training.
Bacterial community trends associated with sea scallop, Placopecten magellanicus, larvae in a hatchery system.
Poster ID: 1475974 Poster Title: “Bacterial community trends associated with sea scallop, Placopecten magellanicus, larvae in a hatchery system.”
Session Information
Agriculture Session Date: Tuesday August 8, 2023 Session Time: 5:00 PM – 6:30 PM Pacific Time
Authors: Suzanne L. Ishaq1*, Sarah Hosler1, Adwoa Dankwa1, Damian C. Brady2, Erin Grey3, Phoebe Jekielek4, Kyle Pepperman5, Jennifer Perry1, Rachel Lasley-Rasher6, Brian Beal3,7, Timothy J. Bowden1
Affiliations:1School of Food & Agriculture, University of Maine, Orono ME 04469. 2 School of Marine Sciences, Darling Marine Center, University of Maine. 3 School of Biology and Ecology, University of Maine, Orono ME 04469. 4 Department of Biological Sciences, University of Southern Maine, Portland ME 04103. 5 Downeast Institute, Beals, ME 04611. 6 Ecology and Environmental Sciences, University of Maine, Orono ME 04473. 7 Division of Environmental & Biological Sciences, University of Maine at Machias, Machias, ME 04654
Atlantic sea scallops, Placopecten magellanicus, are the most economically important marine bivalves along the northeastern coast of North America, and wild-caught adults and juvenile spat are increasingly being cultured in aquaculture facilities and coastal farms. While adults can be induced to spawn successfully in hatcheries, the last two weeks of the larval maturation phase are plagued by large mortality events, making production unfeasible. Research into other scallop- and aquacultured-species point to animal loss from bacterial infections or from altered functionality of host-associated microbiota. There are no previous studies of the bacterial communities from biofilms growing in scallop hatchery tanks, nor even host-microbial studies with this species of sea scallops. We identified bacterial communities in veliger-stage wild larvae, hatchery larvae, and tank biofilms, using the V3-V4 region of the 16S rDNA gene, via Illumina MiSeq sequencing. Hatchery larvae had lower bacterial richness (number of bacteria taxa present) than the wild larvae and tank biofilms, and hatchery larvae had a similar bacterial community (which taxa were present) to both wild larvae and tank biofilms. Bacterial richness was not significantly different between tanks which had been occupied by larvae for 48 hours, and those which had just been drained, scrubbed clean, and refilled with filtered seawater. Static-water-flow compared to continuous-water-flow (flow-through) did not generate different levels of bacterial richness overall, and only an equivocal difference when accounting for time as a smoothing feature in the model (GAM, p = 0.04). Bacterial richness and community similarity between tank samples fluctuated over the trial in repeated patterns of rise and fall, which showed some correlation to lunar cycle where richness is high when the moon is about 50% and richness is low during new and full moon phases. This may be a proxy for the effects of spring tides and trends in seawater bacteria and phages which are propagated into hatchery tanks. The number of days since the full moon was significantly correlated with bacterial community richness in tanks (GAM, p < 0.01): low during the full moon, peaking ~ 21 days after the full moon, and decreasing again at the next full moon. These results along with future work, will inform hatcheries on methods that will increase larval survival in these facilities, for example, implementing additional filtering or avoiding seawater collection during spring tides, to reduce certain bacterial taxa of concern or promoting a more diverse microbial community which would compete against pathogens.
I’m honored to be giving the keynote presentation at the Boston University Microbiome Day this July 12! I’ll be sharing my work on microbes and social equity, especially as pertains to health and the environment. You can find event details and registration here. You can also follow the group on Twitter @BuMicrobiome.
Time
Event
9:00-9:45 AM
Breakfast and coffee
9:45-10:00 AM
Welcome
Faculty Talks
10:00-10:30 AM
Dr. Sarah Davies
10:30-11:00 AM
Dr. Joe Larkin
Keynote Address
11:00AM-12:00 PM
Dr. Sue Ishaq
12:00PM-1:30 PM
Lunch and Poster session
Panel Discussion: Translating the Microbiome to Industry
1:30-2:30 PM
Jennifer Cookson, Andrea Watson and Nili Ostrov:“Translating the Microbiome to Industry”