AVS 454/554: DNA Sequencing Analysis Lab

Instructor
Dr. Sue Ishaq (she/her); sue.ishaq@maine.edu

I do not have pre-scheduled office hours, but I am always happy to meet to help you navigate your project.

Time

Location and mode of instruction

Class format: Short lectures followed by guided computer laboratory time and discussions on bioinformatics and theory. Various outputs from the analysis will be submitted online for assignments. This course requires access to a computer.

Syllabus Table of Contents, Click the Heading to go to that section
- Description of course and prerequisites 2
- Course materials and digital services used 2
- Course goals
- Student learning outcomes and objectives to meet them: 3
- Project selection
- Expectations of students and university policies 3
- Attendance 3
- Late Assignments 3
- Class participation
- Campus Policies 4
- Students Accessibility Services (SAS) Statement 4
- Assignments and Assessment: Detailed instructions and rubrics on Brightspace. 4
- Schedule of lectures and assignments 5
- UMaine resources related to research, statistics, writing, and careers: 11
- There is always someone on campus to help you 11
 - Free food and clothing 11
 - University Rainbow Resource Center 12
 - Pregnancy, lactation, and parenting 12
 - University Veterans Education and Transition Services (VETS) 12
 - University Counseling Services 12
Description of course and prerequisites
This course will take students from raw DNA sequencing data through quality assurance, through to data interpretation, statistical analysis, and presentation of the results as a mock scientific article. A background in microbiology, microbial ecology, or genetics would be beneficial. No programming or data analysis experience is required. Students who are performing research may bring their own sequencing data to process in class. Students will become familiar with command-line programs and basic computer programming techniques; understand bioinformatics methods such as quality trimming, assembling contigs, sequence alignment, using reference databases, and statistical comparisons; gain hands-on experience in bioinformatic analysis of DNA sequences using the R platform and its packages; primarily, DADA2, phyloseq, vegan, ggplot2; and be able to apply the knowledge gained in class to other sequence types and programs. Students may bring their own data, or some can be provided. AVS 454 and 554 cannot both be taken for credit.

Credit hours: 2
Prerequisites: AVS 254 or BIO 319 or Bio 350 or BMB 280 or WLE 200 or SMS 300, and STS 232 or MAT 215; or graduate student standing

Course materials and digital services used
- Textbook and readings: There is no required textbook for this class. Reading material will be provided as electronic journal articles or readings.
- Lecture slides: All lectures are provided at the beginning of the semester as pdfs with annotated speaker notes included as comments in the document. These will be updated as needed with corrections.
- Lecture recordings: All lectures are recorded, and video files are added to Brightspace after class.
- Software: All software used in the course is free and can be downloaded to a personal computer.
- Assignments: All assignments can be submitted through Brightspace, and each assignment portal has more detailed instructions, grading rubrics, and the proposal assignment has an optional document template.
- Brightspace Online Learning Software
 - Log into Brightspace. Read the tutorial. Download the Pulse app.
 - Brightspace is the online learning management system used at the University of Maine. In our course Brightspace site, you will be able to access course materials, assignment descriptions, this syllabus, and the course schedule. You will submit your work through Brightspace and will be able to access your grades and feedback as well. You can download a "Brightspace Pulse" app for most mobile devices from your regular app store. Be aware: Some functions in Brightspace work better when accessed through a laptop/desktop than through a mobile device. Support for the website and mobile apps includes video tours, IT Help Desk, and other resources. If you continue to have problems with Brightspace, please let me know as soon as possible.
 - If you wish to retain a personal copy of course materials, please do so before the end of the semester. **You will not have access to a course’s Brightspace site after you complete the course.** You can store copies of material you wish to retain on Google Drive, your hard drive, or other media of your choosing. Other materials posted by your faculty may be found at the library.
- Zoom Online Conferencing Software
 - Read the UMaine tutorial.
 - Zoom is an online conference software that students can use to attend class remotely as needed. Students may invite friends and family to watch their presentation using Zoom.

I am happy to provide accommodations to the way course materials are formatted or provided to make them easier to access and understand. Please let me know if you have suggestions to improve the course materials.

University of Maine | Dr. Sue Ishaq; sue.ishaq@maine.edu, 207-581-2770
Student learning outcomes and objectives to meet them:

After completion of the course, students will be able to:

1. Use an understanding of bioinformatics methods, such as quality trimming, assembling contigs, sequence alignment, using reference databases, and statistical comparisons, to curate a data processing and analysis workflow. This may include bioinformatic analysis of DNA sequences, using the R platform and its packages, MEGA, NCBI genome assembly, MG-RAST, etc. (Quantitative Literacy)

2. Demonstrate proficiency in taking raw DNA sequence data through quality control steps to interpretation, and summation of the workflow and results into mock scientific journal article manuscripts. (Quantitative Literacy)

3. Demonstrate scientific writing skills, specific to manuscript preparation, including incorporating instructor and peer-review comments and revisions. Submit multiple drafts and progression the ideas with each draft.

4. Demonstrate skills in peer-reviewing manuscripts, including reviewing, editing, and scientific critique.

Expectations of students and university policies

Attendance and Participation
Students are expected to attend lectures, but it is understood that life often precludes this and that students may be performing field work or are located off-campus. Students may attend class virtually, through Zoom, which will be offered for each class. Students who will miss a significant number of classes, or who require additional accommodations, may contact me to make alternate arrangements. Students who are lactating or caring for young children may bring them to class (see section on Pregnancy, lactation, and parenting).

Students are expected to participate in discussions in class, or on Brightspace. I strive to create inclusive discussions, but if students still find it challenging to participate, please notify me and I will alter the discussion format as needed. Supporting inclusion and community is an active process that involves both invitation, and support to ensure that the learning community is and remains an equitable and inclusive place. Students are expected to conduct themselves in a professional, courteous manner and abide by university policies.

Course Schedule Disclaimer (Disruption Clause): In the event of an extended disruption of normal classroom activities (due to COVID-19 or other long-term disruptions), the format for this course may be modified to enable its completion within its programmed time frame. In that event, you will be provided an addendum to the syllabus that will supersede this version.

Late Assignments
I will accept assignments for a certain period of time after the due date, however, the assignments in this class build on one another and their due dates are specifically set to help you achieve the end goals of this class. You will not receive a grade reduction for late assignments, but you waive the right to receive feedback which might impact the quality of successive drafts and your next grade. Regular assignments will not be accepted after the last day of class and the final draft will not be accepted after the finals period of the semester. If you cannot
complete all assignments within the semester, please contact me about taking an Incomplete instead of a letter grade and setting up deadlines to complete the coursework after the semester in order to receive a letter grade.

Campus Policies

“The University of Maine is an EEO/AA employer, and does not discriminate on the grounds of race, color, religion, sex, sexual orientation, transgender status, gender expression, national origin, citizenship status, age, disability, genetic information or veteran’s status in employment, education, and all other programs and activities.” Follow the links for more information.

Academic Honesty Statement

Students Accessibility Services Statement

Course Schedule Disclaimer

Observance of Religious Holidays/Events

Students Accessibility Services (SAS) Statement

All students may request an accommodation for this course without a letter, and I will do my best to comply. If you need an accommodation letter for another course or to have it on file for this course: please contact SAS, 121 East Annex, (207) 581-2319, as early as possible in the term.

Note on authorship

If you are pursuing a manuscript for publication in this class, the work you generate is your intellectual property. I do not expect to be an author on your manuscript, or to have ownership over any materials you generate. I would like me/the class to be mentioned in the Acknowledgments section. I will help you facilitate authorship roles with the full research team (i.e. the people that generated these data).

Assignments and Assessment: Detailed instructions and rubrics on Brightspace.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not graded</td>
<td>Self assessments – After some classes, there will be a self-assessment to complete on Brightspace. These are not graded but will help you generate ideas and items that you can use to form your other graded assignments.</td>
</tr>
<tr>
<td>5 points</td>
<td>Quizzes – Read a short document provided in the quiz and answer a few questions to test your understanding. Quizzes are on Brightspace, are not timed, and may be taken twice. Quizzes are auto-graded, contact me if you feel there has been an error.</td>
</tr>
<tr>
<td>5 points</td>
<td>Assignments Assorted small assignments to help build other skills</td>
</tr>
<tr>
<td>60 points</td>
<td>Mini scientific manuscript Lab work output will be used to write one scientific manuscript using amplicon sequencing data, which will be submitted with successive revisions 3 times during the semester. We will generate the Methods and Results section in lab, and students will be responsible for generating the Introduction and Discussion sections independently. Students may work collaboratively with up to three students per group, but the manuscript length, depth of information, and quality of the writing should reflect the number of students in the group. Graduate students are expected to present a higher quality of writing, > 15 citations, more nuanced statistical analysis or graphical representation, and more in-depth discussion sections.</td>
</tr>
</tbody>
</table>
Specific instructions are provided on Brightspace, and guidelines may be found in the “writing manuscripts” reading. For each successive submission, students will incorporate revisions from instructor and (when available) peer review to progress the complexity of the scientific content and the maturity of the writing style.

At the end of the semester, students may opt to use their analysis and manuscript and pursue submission in a scientific journal along with the research team who provided their dataset. Not all datasets may be applicable, and the final decision will rest with the student and with the Principal Investigator who owns the data. Submission for journal review is completely elective and is not considered in the grading of this class in any way.

Undergrad: 2 reviews totaling 25 points

Graduates: 4 reviews totaling 25 points

Elevator Speech – Give a 2-3 min (timed), non-technical summary of your project or topic. You can use notes, but do not prepare slides or visuals. The goal of the elevator speech is to describe your project conversationally, to get someone interested.

Grading (out of 100 points): A = 93–100; A− = 90–92; B+ = 87–89; B = 83–86; B− = 80–82; C+ = 77–79; C = 73–76; C− = 70–72; D+ = 67–69; D = 63–66; D− = 60–62; F = 0–59. The completion of both AVS 401 and 402 with grades of C minus or higher is required for graduation.

Schedule of lectures and assignments.

Each row is one class, and all the associated materials (lecture notes, readings, assignments, assessments, links) are included in a Brightspace module which correspond to the name and order of the lab.

Prior to the first class
Download and install R (the program candy): https://www.r-project.org/ and Rstudio (the fancy wrapper): https://rstudio.com/products/rstudio/download/

- Suggested software for viewing/editing files: Sublime 3 text editor: https://www.sublimetext.com/3
- Suggested resources for new R users:
 - PDF on Brightspace: AVS454 Basic Info on Command Line and R
 - http://www.r-tutor.com/r-introduction

After every class
Update/clean up your code, annotate with notes, add to your methods or results section of your manuscript by describing what you did that day.

Week 1
| T 8/30 | “Intro to the class”, syllabus and course expectations, finding course materials. Students will introduce themselves, their major, and what they hope to get out of the class.

Lab 1: Introduction to R and getting started for beginners
The rest of the first class will be spent helping first-time R users make sure they have everything sorted. Experienced R users are welcome to leave class early. We will practice installing R and packages, keeping good notes and workflow files, basic file import and data entry.

☐ **Action Item:** Make sure you have the sequencing files for your project (or the example files) on your computer. Fastq.gz is the preferred file format, but fastq and fasta also work.

☐ **Reading 1:** Read/watch a lecture on Brightspace on a sequencing technology of your choice: Illumina, PacBio, Ion Torrent, Roche, Sanger. Available as pdf and recorded slides.

☐ **Reading 2:** Read/watch a lecture on Brightspace, AVS454_Data_files_and_quality |

| R 9/1 |

Lab 2: Assessing amplicon data quality and trimming
Check in from last class, then we will assess raw data quality in R for our samples, and decide whether to use contigs or single reads. We will choose parameters to use for filtering and trimming, which you may complete in class or on your own time before the next class.

☐ **Action Item in R:** Complete the “filter and trim” step with DADA2 by next class.

☐ **Action Item in R:** Continue personalizing your copy of the workflow, including file and folder names, notes to yourself, and summaries of each step.

☐ **Self-assessment on Brightspace:** Make one aggregate quality plot for the Forward reads, and one for the Reverse reads (if you have any). Summarize the quality of each in a sentence, and why you continued with Forwards only, or F+R.

☐ **Self-assessment on Brightspace:** List the trimming parameters you chose and why/what they accomplished. |

Week 2

| T 9/6 | *Lab 3: Error rates and picking sequence variants*
Check in from last class, then we will use DADA2 in R to estimate the error rates in the dataset. While that is running, we will talk about how DADA2 uses the error rates to pick SVs, and briefly how that compares to OTUs.

☐ **Action item:** Complete the dada (slow) and makeSequenceTable (quick) commands in R by next Tuesday

☐ **Self-assessment on Brightspace:** List the number of bases you used for the error rate picking, the number of total SVs that were created, and the lowest and highest SVs in a sample.

☐ **Reading:** Callahan_2016_DADA2
☐ **Reading:** Callahan_2017_ASVs_over_OTUs
 ▪ We’ll go over these papers as a group next class, bring thoughts and questions |

| R 8/8 | *Journal club day and catching up on concepts*
Let’s go over the two Callahan papers assigned in the previous class, define terms we didn’t understand, and share our thoughts on ASV vs. OTU debate.

University of Maine | Dr. Sue Ishaq; sue.ishaq@maine.edu, 207-581-2770
<table>
<thead>
<tr>
<th>Week 3</th>
<th>T 9/13</th>
<th>Open working time, Sue will be away at a work thing. The classroom will still be open, but you’ll need to set up your own Zoom session if you want to meet with group members.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Suggested use of your time: start finding 5-10 journal articles that will support the Background/Introduction section to your scientific manuscript, read them, and begin drafting about 3 paragraphs for that section. Details can be found in the “AVS 454-554 Requirements and template for manuscript” document on Brightspace. I suggest creating a google doc for your draft to make peer review easier later. You may form groups for this. If you are working with your own dataset, you will find papers on that topic. If you are working with the example data, you may choose to 1) find papers about the rumen microbiome and effect of diet which is the experiment those data are from, or 2) create a narrative that reflects the data you will eventually have, and overlay it on the example data (so that the stuff you write for the class is useful to your future research manuscripts).</td>
</tr>
<tr>
<td>R 9/15</td>
<td>Open working time, Sue will be away at a work thing. The classroom will still be open, but you’ll need to set up your own Zoom session if you want to meet with group members.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required use of your time: read/listen to the “Taxonomy and reference databases” lecture on Brightspace, then complete the assignment. Think about the reference database you’ll want to use for your own data next week.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assignment (5 pts): Complete the “DIY taxonomic reference database” exercise on creating reference databases using MEGA, due in one week. Instructions on Brightspace. This is a demo assignment, and will not be used in your data analysis workflow.</td>
</tr>
</tbody>
</table>
| | | **Reading (choose 1):**
| | | - Balvociute_2017_comparing_taxonomic_databases
| | | - Smith_2020_database_choice_rumen_microbiome
| | | - Collins_2021_Meta-Fish_database_12S
| | | - Weigand_2019_reference_libraries_aquatic_biota

| Week 4 | T 9/20 | Lab 4: Chimeras and workflow verification
Check in from last class, then we will use DADA2 in R for removing chimeras, and counting our reads in previous steps to make sure we like what we did before moving on. Looking into positive and negative controls. Go over assigning taxonomy. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Action item: complete taxonomy assignment by next class. It is recommended to let this run overnight</td>
</tr>
</tbody>
</table>
Lab 5: Removing contaminants
Check in from last class, then we will revisit data quality discussion and the wet-lab and dry-lab contaminants you are likely to find in sequencing data, and setting up code to use sequenced negative controls to clean up your data. Together in R we will use negative controls or DNA quantification data to remove contaminating sequences from data using Dr. Ishaq’s code or decontam. If you don’t have negative controls, this time will be used to catch up, revise, or write. Either way, you can remove unwanted taxa by name.

- **Due**: DIY database on Brightspace
- **Action item**: complete either Ishaq method or the decotam method by next class
- **Self-assessment on Brightspace**: Describe how you used negative controls to remove possible contaminants, and if you removed any taxa by name and why (ex. Mitochondrial matches). Include ordination plots of the ‘before’ and ‘after’.
- **Reading**: Nearing_2021_microbiome_processing_yields_different_results

Week 5

Lab 6: Rarefaction, and alpha diversity graphics
Check in from last class, then we will use phyloseq in R to rarefy our data and start making pretty graphs to quantitatively describe the microbial diversity we have.

- **Action item**: Fancy up at least one alpha diversity plot that you’ll use for your manuscript
- **Reading**: Hong_2022_to_rarefy_or_not_to_rarify
- **Reading**: AVS454_alpha_diversity_nitty_gritty

Lab 7: Experimental design and models
Check in from last class, then we will discuss experimental designs, and how to build your statistical model. We will write out research questions that we can test with our models, then have free time to catch up on analysis, or work more on alpha diversity graphics.

- **Self-assessment on Brightspace**: what are the research questions you want to try and answer?
- **Self-assessment on Brightspace**: draw and describe your experimental design, what groups or factors are you looking at? Are any factors nested within another? Do you have samples from the same host or source over time (repeated measures)? Do you have biological or technical replicates?
- **Reading**: Read a lecture on Brightspace, AVS454_quick stats

Week 6

Lab 8: Alpha diversity stats
Check in from last class, then we will use phyloseq, vegan, and other packages in R to run statistics on Alpha diversity.

- **Action item**: complete means testing or other statistical comparison for your alpha diversity
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
</table>
| R 10/6 | **Lab 9: Other ways to graph alpha diversity**
 - **Assignment due**: Put whatever you have drafted so far for the amplicon analysis manuscript (includes background and quality-assurance processing steps but not much else yet) into the Google Drive folder by midnight.
 - **Assignment (10 pts)**: Peer review round 1. Undergrads select 1 manuscript to read, grad select 2 manuscripts to read, make comments on in google docs, and/or revise using “suggestion mode”. Note, everyone will be able to see these comments. To obtain the grade, write 1 short paragraph for each manuscript summarizing what you liked and what you commented on, and submit to Brightspace for only me to see. Detailed instructions can be found on Brightspace. Due after break |
| **Week 7** |
| T 10/11 | No class – Fall Break |
| R 10/13 | No class – UMaine Medicine Symposium in Portland, ME |
| **Week 8** |
| T 10/18 | **Lab 10: Comparing changes in taxonomy**
 - Lecture and lab: “Delineation of taxonomic change”; general guidelines for displaying taxonomy, as well as DESeq2, forests, LEFSe.
 - **Assignment due**: Peer reviews on drive and submitted to Brightspace.
 - **Reading**: Read a lecture on Brightspace, AVS454_how_do_you_figure |
| R 10/20 | **Lab 11: Beta diversity and simple ordinations**
 - Check in from last class, then using phyloseq or vegan/ggplot2 we will compute community-level similarity and graph beta diversity as ordination plots.
 - **Action item**: make at least one simple ordination to visualize beta diversity in your data
 - **Reading**: Ramette_2007_multivariate_microbial_ecology
 - **Reading**: Palmer_Ordination_Methods_Overview |
| **Week 9** |
| T 10/25 | **Lab 12: Beta diversity and ordination stats**
 - Check in from last class, then using phyloseq or vegan/ggplot2 we will run stats on our beta diversity ordinations and think about other ways to graph beta diversity.
 - **Assignment due (10 pts)**: First draft of amplicon analysis manuscript that includes background and quality-assurance processing steps. Due on Brightspace by midnight.
 - **Reading**: Jia_2017_hypothesis_testing |
| R 10/27 | **Lab 13: Beta diversity component analysis**
 - Lecture and Lab: “Beta diversity component analysis”. more community-level analysis. RDA, CCA, db-RDA, WTF.
 - **Action item**: complete a CCA or an RDA or a db-RDA (don’t need more than one)
 - **Reading**: Ramette_2007_multivariate_analysis (work a revisit)
 - **Reading**: Jia_2017_hypothesis_testing (worth a revisit) |
<table>
<thead>
<tr>
<th>Week 10</th>
</tr>
</thead>
</table>
| **T 11/1** | *Open class time: Focus on beta diversity*
Collaboratively work on refining out beta diversity analysis, manuscript, etc. |
| **R 11/3** | *Open class time: Putting the pieces together*
Now that we have an idea of what our data looks like, let’s start making more complicated graphs and statistical models. Open class time to work on analysis, manuscript, etc. Focus on creating a plan to answer those questions from our experimental design lecture.

☐ **Assignment due:** Put whatever you have drafted so far for the amplicon analysis manuscript (includes background and quality-assurance processing steps but not much else yet) into the Google Drive folder by midnight.

☐ **Assignment (15 pts):** Peer review round 2. Undergrads select 1 manuscript to read, grads select 2 manuscripts to read, make comments on in google docs, and/or revise using “suggestion mode”. Note, everyone will be able to see these comments. To obtain the grade, write 1 short paragraph for each manuscript summarizing what you liked and what you commented on, and submit to Brightspace for only me to see. Detailed instructions can be found on Brightspace. |

<table>
<thead>
<tr>
<th>Week 11</th>
</tr>
</thead>
</table>
| **T 11/8** | *Lab 14: Niche versus neutral models and sequence tracking*
☐ **Optional Reading:** Fisher_Mehta_2014_niche_neutral
☐ **Optional Reading:** Knights_2011_source_tracker |
| **R 11/10** | *Lab 15: PiCRUST function prediction*

☐ **Assignment due:** Peer reviews due, finish comments on Google docs and submit summaries to Brightspace for the grade

☐ **Optional Reading:** Douglas_2020_PiCRUST2 |

<table>
<thead>
<tr>
<th>Week 12</th>
</tr>
</thead>
</table>
| **T 11/15** | *Lab 16: Tree building*
Trees as needed. Free time for additional analysis/writing |
| **R 11/17** | *Open class time* to work on analysis, manuscript, etc.

☐ **Assignment due (20 pts):** Second draft of amplicon analysis manuscript due for grading

☐ **Assignment (5 pts):** give elevator speeches in next class |

<table>
<thead>
<tr>
<th>Week 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 11/22</td>
</tr>
<tr>
<td>R 11/24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 14</th>
</tr>
</thead>
</table>
| **T 11/29** | *Open class time: Graphics check-up*
Let’s go back over the graphics and make sure they are telling the story we think they are. This will be open time to chat about improving our graphics and making them the best we think we can. |
| **R 12/1** | *Open class time* to work on analysis, manuscript, etc. |

<table>
<thead>
<tr>
<th>Week 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 12/6</td>
</tr>
</tbody>
</table>
There is bonus content on Brightspace, including overview lectures and selected readings, if you want to read more on whole-genome sequencing, metagenomics, metatranscriptomics, challenges of using 16S and how to account for genetic and sequencing-technology-based problems in the bioinformatic workflow.

UMaine resources related to research, statistics, writing, and careers:

- Fogler Library
 - OneSearch, https://library.umaine.edu/; find scientific literature
 - Research Data Management: https://libguides.library.umaine.edu/datamanagement
 - Creating a research poster: https://libguides.library.umaine.edu/confposters
 - Creating a research presentation: https://libguides.library.umaine.edu/confposters/presentations
 - Presentation Practice Room, https://library.umaine.edu/use/presentation-practice-room/
- Statistics Consultation, https://umaine.edu/tasc/stats/ (may have a cost associated with this service, talk to your research mentor before setting up a consultation
- Writing Center, https://umaine.edu/wcenter/; tutoring, editing, skills development

There is always someone on campus to help you

My door is always open and I am always willing to help students, however, as a university employee I am also required to keep the community safe by disclosing information on crimes. This means I am a “mandatory reporter”. If you disclose something to me, including in assignments, I am obligated to provide this information to the campus Title IX office. The Title IX Office will contact you discretely, and offer you support services, guidance, and help you choose if you want to take action.

For confidential resources on campus:
- Counseling Center: (207) 581-1392
- Cutler Health Center: (207) 581-4000.
- Rape Response Services: 1-800- 871-7741
- Partners for Peace: 1-800-863-9909.

For support services on campus which may have to report the incident to others who can help:
- (emergency and non emergency) Title IX Student Services, (207) 581-1406,
- (emergency and non emergency) University of Maine Police: (207) 581-4040 or 911.
- (non emergency) Office of Community Standards: (207) 581-1409.

Free food and clothing
- Black Bear Exchange’s Food Pantry, Orono campus
- Old Town Crossroads Ministry
University Rainbow Resource Center
The Rainbow Resource Center located in Memorial Union, Room 224, empowers and increases the visibility of Lesbian, Gay, Bisexual, Transgender, and Queer (LGBTQ) people by promoting equality and inclusiveness. We strive to maintain an open, safe, and supportive environment for students, staff, faculty and alumni and provide educational opportunities, information, and advocacy services.

Pregnancy, lactation, and parenting
I am happy to make accommodations for students based on pregnancy, lactation, and parental needs, as well as work with the Office of Equal Opportunities (E.O.). The state of Maine and UMaine policies allows students to breastfeed in any space, including in class. If a lactation space is required, please contact E.O. for arrangements. The Pregnant on Campus Initiative provides pregnancy and parenting resources in Orono.

University Veterans Education and Transition Services (VETS)
University of Maine’s VETS Center serves student veterans as they apply to, attend and advance beyond UMaine. The Veterans Center connects student veterans with the resources they need to successfully transition from combat to classroom to career. This includes help navigating the admissions process, applying for financial aid and U.S. Department of Veterans Affairs education benefits, academic assistance and preparing to re-enter the workforce. The VETS Center is located in Room 143 of the Memorial Union.

University Counseling Services
If you are experiencing a mental health emergency: Dial 911. You can also call campus Police Services at (207) 581-4040. For urgent help, please check this page for your options: https://umaine.edu/counseling/need-urgent-help/.

Over the course of our time at the University, we may face a variety of concerns – depressed mood, anxiety, stress, family concerns, body image, substance use, sexuality and many others – that may interfere with their ability to focus on their studies. Counseling Services provides mental health and social support for all currently enrolled students. Staff follow strict legal and ethical guidelines concerning the confidentiality of counseling. Counseling services is located in Cutler Health Center, Room 125 and can be reached by phone at (207) 581-1392.

Acknowledgement
I would like to thank UMaine CITL, the STEM Pedagogy Working Group, Kevin Roberge for providing theory on syllabus design, and Minglei Zhang for providing text, resources, and feedback for improving this syllabus.