Tindall defended her master’s thesis!

Photo of woman in front of mountains

Excitingly, master’s of science graduate student Tindall Ouverson successfully defended her thesis! Tindall is a student at Montana State University, and took over a collaborative project that stretches back when I left my postdoc position (to head to another job) in the Menalled Lab in 2017. Earlier this year, her first scientific paper was published, Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains. More recently, she won first prize in the graduate students poster competition at the 2021 Montana State University LRES research colloquium.

Now that she has defended, Tindall will focus on revising the research thesis chapter which was not already published into a manuscript to submit for review at a scientific journal. After that, she is planning on pursuing her career in agricultural sustainability research and outreach.

RESPONSE OF SOIL BACTERIAL COMMUNITIES TO CROPPING SYSTEMS, TEMPORAL CHANGES, AND ENVIRONMENTAL CONDITIONS IN THE NORTHERN GREAT PLAINS

by

Laura Tindall Ouverson

Master of Science

Land Resources and Environmental Sciences

MONTANA STATE UNIVERSITY

Bozeman, Montana

July 12 2021

ABSTRACT

Soil bacterial communities are essential components of the soil ecosystem that support crop production and indicate a soil’s health. However, agriculture in semiarid drylands and their associated soil bacterial communities face increasingly warmer and drier conditions due to climate change. Two complementary studies were conducted to assess the response of soil bacterial communities to cropping systems, temporal changes, and soil temperature and moisture conditions in semiarid, dryland agricultural systems of the Northern Great Plains. 

The first study focused on soil bacterial community response to crop phase (i.e., crop species) of a rotation in contrasting cropping systems (chemical inputs and no-till, USDA-certified organic tilled, and USDA-certified organic sheep grazed) over a growing season. Organic grazed management supported more diverse bacterial communities than chemical no-till, though diversity in all systems decreased over the growing season. Organic grazed bacterial communities were distinct from those in the organic tilled and chemical no-till systems. An interaction between cropping system and crop phase affected community dissimilarity, indicating that overarching management systems and environmental conditions are influential on soil bacterial communities.

The second study evaluated soil bacterial communities in a winter wheat-cover crop or fallow rotation. Observations were conducted in the summer fallow and two cover crop mixtures differing by species composition and phenologies, terminated by three different methods (chemical, grazing, or haying), and subjected to either induced warmer/drier or ambient soil conditions. Only the presence and composition of cover crops affected bacterial community dissimilarity. Bacterial communities responded to an interaction between the presence and composition of cover crops and environmental conditions, but not termination. Additionally, soil bacterial communities from mid-season cover crops were distinct from early season and fallow. No treatments affected bacterial communities in 2019, which could be attributed to historic rainfall. Cover crop mixtures including species tolerant to warmer and drier conditions can foster diverse soil bacterial communities compared to fallow soils.

Overall, these studies increased our understanding of how soil bacterial communities respond to soil health building practices in the Northern Great Plains. Cropping systems can foster unique soil bacterial communities, but these effects may be moderated by environmental and temporal conditions.

Tindall won first prize in a graduate students poster competition!

Congratulations to Tindal Ouverson for winning first prize in the graduate students poster competition at the 2021 Montana State University LRES research colloquium!

Tindall is a master’s of science in Land Resources and Environmental Sciences at Montana State University, working with advisers Drs. Fabian Menalled and Tim Seipel. Tindall and I have been working closely over the past three-ish years on soil microbiomes, and she is preparing to defend her thesis this May.

Check out her recently published paper: Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains. 

Tindall’s first paper was accepted!

I’m pleased to announce that master’s student Tindall Ouverson’s first manuscript was accepted for publication!

Photo of woman in front of mountains

Tindall is a Master’s of Science in the Department of Land Resources and Environmental Sciences at Montana State University. Her graduate advisers are Drs. Fabian Menalled and Tim Seipel. Her research focuses on the response of soil microbial communities to cropping systems and climate change in semiarid agriculture. 

I have been mentoring Tindall as a graduate committee member since she began in fall 2019, teaching her laboratory and analytical skills in microbial ecology, DNA sequencing, and bioinformatic analysis. We first met when she came to visit when I was working in Oregon, and since then have connected remotely. She has a flair for bioinformatics analysis, and a passion for sustainable agricultural development. She plans to defend her thesis in 2021, and then to further her career in sustainable agriculture in Montana.


Tindall Ouverson, Jed Eberly, Tim Seipel, Fabian D. Menalled, Suzanne L. Ishaq. 2021. Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains.  Frontiers in Sustainable Food Systems.  Article. Invited submission to Plant Growth-Promoting Microorganisms for Sustainable Agricultural Production  special collection.

Abstract

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a five-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.