Teaching Statement development series: scientific literacy

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here as part of a development series, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

*Please note, these are selected portions of my Statement which have been edited to remove sensitive information. These are early drafts, and may not reflect my final version. Tenure materials that I generate are mine to share, but my department chair, committee, and union representative were consulted prior to posting these. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty.*


Improving scientific literacy and communication skills

In all of my curricula development, I put particular emphasis on designing assignments which build technical and communication skills. The technical skills are developed through walkthroughs for learning to use online databases such as NCBI’s Nucleotide (https://www.ncbi.nlm.nih.gov/nucleotide/) and MG-RAST (https://www.mg-rast.org/), learning to read scientific articles, and learning to analyze data as needed.  AVS 454/554 is primarily skills-based, and specific skills are listed in the Developing curricula section.

The communication skills are primarily practiced through written assignments. Scientific writing is particularly important in microbial ecology and host-microbe interactions, fields in which strict memorization might not prove useful, as the body of knowledge changes rapidly. Rather, the material lends itself to critical thinking and debating theory, to presenting a scientific argument, to problem solving, or to composing technical/scientific writing, which is different than much of the written assignments students have accomplished in other coursework. In allowing students the word count to work through their thoughts, instead of providing short answers, they are able to find the words to express their opinion on, for example, the Hygiene Hypothesis when only weeks before they didn’t know that some microbes can turn the immune system on or off. 

Written assignments allow me to provide students with more substantial feedback, including suggestions on grammatical corrections, sentence structure or placement, or leaps-of-logic where they left readers behind, and of course, on the strength of the scientific argument. This is particularly helpful when learning to write technical science.  These written assignments are narrowed to a specific topic but are otherwise open-scope, and while I provide a recommended reading list, multiple options are available for most of the lectures, which allows students to select the journal articles and scientific information used as the reference material for their assignments. In giving students the agency to choose a topic to write about from the curricula tasting menu I’ve provided in my lectures, I receive back more diverse topics than just what I provided, which keeps things interesting for me. Students are more engaged when they can connect to material of their own choosing and select something relevant to their life. And, in giving them assignments which practice their writing voice, I witness their progression towards mature scientific writing.  

For most of the students I have taught, my class is their first formal introduction to the subject, whether it be research, host-microbe interactions, or DNA data analysis. To give students more time to practice the material, and to improve retention, I give topic-related readings, have a guided discussion at the end of lectures, and ‘stack’ assignments. For example, in AVS 254, Introduction to Animal Microbiomes, students write a non-technical summary of a scientific article: 1-2 paragraph summary in which they have to introduce the paper and its purpose, the methods used, and a major result or two. Trying to explain a complex experiment in simple terms is more challenging than it seems, because students need to understand the material in order to recreate it into their own words. By restricting the length in these assignments, it forces students to be more direct in their explanation. When it comes time to write an essay for a take-home exam, I allow the students to build off those summaries, if they choose, having received my feedback.

I also promote more creative information presentation in assignments, including “concept maps”. The assignment is to create a visual outline (diagram) around the specified topic. Starting with a main idea or topic in the center, branches are created out to secondary ideas, and so on, like a spider web, to create a concept map/diagram of important related topics and information. The goal of this is to create a study guide based on what students felt are the important concepts, centered around the material we have covered in that section of the course material.  Creating a visual map in this way helps students create order out of the information, by setting up a hierarchy of importance to better understand the relationships between ideas. An example is provided below, with permission from the student.

Concept Map on ‘Microbes and Technology’, by Kiera O., student in AVS254 Fall 2020.  Used with permission.

Previous installments:

Teaching Statement development series: developing curricula.

Teaching Statement development series: accessibility

Teaching Statement development series: developing curricula

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here as part of a development series, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

*Please note, these are selected portions of my Statement which have been edited to remove sensitive information. These are early drafts, and may not reflect my final version. Tenure materials that I generate are mine to share, but my department chair, committee, and union representative were consulted prior to posting these. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty.*


Developing curricula

The first course I proposed which was accepted by the University undergraduate curriculum committee is AVS 254, Introduction to Animal Microbiomes, which I have begun teaching annually starting fall 2020.  This lecture and discussion-based course introduces students to host-associated microbiomes; the genomic collection of bacteria, archaea, fungi, protozoa, and viruses present in a host ecosystem. In each lecture, we focus on an anatomical location, theory, or a mode of microbial transfer.  We discuss the host and environmental pressures which select for the resident microbial community there, and the dynamics involved in community recruitment, function, transmission, and interactions with the host.  The material is primarily in animals, including mammals, birds, fish, amphibians, and humans, with occasional material on insects. This course is anticipated to have broad appeal to students in the School of Food and Agriculture, as well as Microbiology and Molecular Biology.  It is my hope that students are introduced to the field of host-associated microbiology through this course, and go on to participate in relevant research, during which they would generate microbial community DNA sequence datasets.  Students could then take AVS 454 in the spring of their senior year to learn to analyze this data and generate a scientific manuscript. In this way, AVS 254 sets the academic track for undergraduates to follow to learn about microbiomes from theory to application.  The course assignments feature a variety of written assignments, including ones to introduce them to online databases of microbial studies, to communicate science to the general public, and to synthesize information from various sources. The full syllabus and information about the class is relayed on my professional blog, https://sueishaqlab.org/teaching/avs-254-intro-to-animal-microbiomes/

The second, which I taught as an AVS special topics course in spring 2020, and which has been approved for spring 2021 as a formal course,  is AVS 454/554 DNA Sequencing Analysis Lab, with undergraduate and graduate sections, respectively.  This course takes students from raw DNA sequencing data through quality assurance, data interpretation, statistical analysis, and presentation of the results as a draft scientific manuscript.  Multiple drafts of the manuscript are submitted, and in addition to my reviews, students provide single-blind peer review, collectively allowing for students to refine and improve their presentation of results over time. Students are encouraged to bring their own microbial community data, or I provide unpublished data from my research collaborators, thus students have the opportunity to pursue submission of their assignment manuscripts for scientific publication along with cooperating researchers.  There is a critical need in the research community for analysis of small projects like the ones used in this class; often these data are from low-priority small projects, or researchers simply do not have the time or expertise to train students in data analysis and interpretation.  The special topics version had 7 students, with 2 additional students informally attending the class, and resulted in 3 scientific manuscripts submitted for review in fall 2020, all with student authors. The full syllabus and information about the class is relayed on my professional blog, https://sueishaqlab.org/teaching/avs-454-554-dna-sequencing-analysis-lab/

Beginning in fall 2020, I began teaching AVS 401 and 402, Senior Paper in Animal Science I and II, respectively.  Together, they form the Capstone Experience for AVS seniors.  The scope of this class was and remains: student involvement in a research project, for which students develop a research proposal in written and oral presentation formats, and then develop a research report in written and oral presentation formats. However, I developed new lectures for the class to introduce students to the proposal writing process, and research in general, as many AVS students have focused on professional applications and not on research.  These include, “What is research”, “Conducting ethical research” which also features a guest lecture from the Paula Portalain at the Office for Research Compliance, “How to read a scientific article”, “Conducting a literature review” which also features a guest lecture by Anne Marie Engelsen a Science Librarian at Fogler Library, “The proposal writing process: experimental design”, “The proposal writing process: project management.”, and “Giving a scientific presentation”. To develop their presentation skills, students first give a 3-min, non-technical “elevator speech”, then a professional presentation at the end of the semester.  To develop their written skills, students write a project summary/abstract, an outline of their proposal, and two more substantial drafts of the proposal.  For the outline and second draft, students will continue single-blind peer review of other proposals, to provide feedback and to improve their skills in science review and critique. The full syllabus and information about the class is relayed on my professional blog, https://sueishaqlab.org/teaching/avs-401-senior-paper-in-avs-i/.

The following sections detail how these curricula are developed and the intent behind assignments. 


Previous installments:

Teaching Statement development series: accessibility

Teaching Statement development series: accessibility

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here as part of a development series, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

*Please note, these are selected portions of my Statement which have been edited to remove sensitive information. These are early drafts, and may not reflect my final version. Tenure materials that I generate are mine to share, but my department chair, committee, and union representative were consulted prior to posting these. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty.*


Improving the accessibility of course materials

While course content might seem like a more pertinent place to begin this Statement, the intellectual content of a course is predicated on the ability of students to access and connect with those materials. The pandemic and social turmoil of 2020 has made this a year like no other for our students, and in conversations with them, I have gathered that it has created new challenges for them and exacerbated existing ones. The primary obstacle for students to attend live lectures and provide effort on assignments is the general increased workload related to online classes, the necessity of employment, and the inflexibility of employers who schedule student employees in a way that precludes them from attending live lectures.  Further, students are under an overwhelming amount of stress, and this has exacerbated learning disorders and created its own obstacles to engaging with course material. To that end, I have made a number of improvements in my course presentation to make materials more approachable and inclusive to learning style and student life outside of the classroom, which have been adopted in 2020 but will persist.

All the course materials for these classes are made available in Brightspace at the beginning of the semester, so students may download readings and lectures when they have access to internet services.  This also allows them to a priori assess the coursework and gauge the expectations on their time, to better plan their effort over the semester in relation to other engagements.  Assignments may be submitted early, and are accepted late with grade penalties applying in some cases.  In 2020-2021, grade penalties are waved to facilitate student scheduling during the pandemic.  For presentations, students may schedule time blocks well in advance, or may opt to record their presentation and submit videos.  Live lectures are recorded and videos are made available to students immediately after class, and previous to the pandemic I gave students the option to attend via remote video conferencing when they were home sick but did not want to miss class.

The availability of coursework in advance and the flexibility of format allows for students to engage with the work at their own pace and in a way that feels more comfortable to them.  In particular, the use of online discussion forums in Brightspace has given a voice to even the quietest of students and allowed for more diverse perspectives to contribute to the topic.

The use of online teaching platforms also allows for more accessibility in the materials for students with additional challenges. For example, after conferring with a student about understanding course materials, I added audio instructions to assignments (a recording of me reading the directions), which allows students with language dysmorphia or visual impairment to more easily understand what is being asked of them.

The use of online teaching software helps me curate assignments to more accurately test student learning and not just how clearly I asked the quiz questions.  For example, it is much easier to track student performance over time and per assignment, and assess which portions of the assignment should be revised to improve their clarity.

Finally, one barrier to student engagement in coursework appears to be a lack of student confidence stemming from an underestimation of their own agency in asking for help, accommodation, or more visibility in the class. Students appear resigned to accept a zero instead of asking for deadline extensions, or for asking for more effort from their instructor. Students appear to internalize poor performance as a personal failure, rather than a discrepancy between how the information is communicated and how it is received.  To that end, I solicit feedback using anonymous polls, and in lectures or assignments which do not generate student engagement I ask students how they would have rephrased the questions I pose to them.  

Something which I have not yet tried, but intend to implement in the future, is a self-reflection assignment at the beginning of the semester for each class. The goal is for students to feel welcome, to feel that they have agency in their education in this class, and to feel that they can let go of control in order to try something new. First, students will be asked to watch a reading of the children’s story, If You Give A Mouse a Cookie (https://youtu.be/QCDPkGjMBro), about a mouse that keeps asking for things.  Next, students will watch a TEDTalk, “Asking for Help is a Strength, Not A Weakness” (https://www.youtube.com/watch?v=akiQuyhXR8o&feature=youtu.be&ab_channel=TED). Then, students will watch the TEDTalk “The Art of Letting Go… Of The Floor” (https://www.ted.com/talks/siawn_ou_the_art_of_letting_go_of_the_floor/details). Finally, students will reflect and write down their goals for the class; 1 thing they want (the cookie), 1 thing they need (the help), and 1 thing they want to let go of (their floor).  

A series of blogs planned about developing my Teaching Statement!

One aspect of my journey in academia that I did not receive any formal training in (few do but that’s beginning to change), was the development of a Teaching Statement. Which is to say, how to develop my personal philosophy on how I approach university-level education, how I decide which facets of information or skills to include and foster in students, and how to assess whether my teaching style and content are effective.

Over the next few weeks, I’ll be sharing selected portions of my Teaching Statement here, as I refine my philosophies for the submission of my second-year review this fall. I welcome feedback! Feel free to comment on the post (note, all comments require my approval before appearing publicly on the site), or contact me directly if you have more substantial edits.

The Teaching Statement is a component for most academic positions which include a lecture or teaching component as a primary effort of the job. I had to write one for my assistant professor applications, but not for any of my post-doctoral or graduate positions even though those included some teaching. For my job applications, my Teaching Statements reflected my previous experiences, explained the courses I wanted to develop, and gave a brief introduction to how I approach teaching.

As a tenure-track assistant professor, I will spend the first 5-ish years of my position creating a tenure packet – a massive document that amalgamates all my accomplishments, failures, and explanations of my actions. Since 50% of my appointment is teaching, my packet will include student evaluations of my courses, a list and description of the courses I developed, and a detailed Teaching Statement. I will use the Statement section to outline my teaching strategies, how I implemented them at UMaine, and how I improved them over time. Since I have only been teaching for a few months at UMaine, my current Teaching Statement includes a lot of strategies which have been implemented only once so far. My Statement will refine over time as I have more to add to it, as I work out the kinks in my course materials, and as I incorporate new aspects of learning and application into my pedagogy.

Teaching Statements are not confidential (assuming they do not contain sensitive information), but are generally only shared at the request and by the discretion of the faculty member. Each tenure-granting institution is unique, and departments weigh criteria differently, thus Statements can’t really be directly compared between faculty. That being said, I thought it would be beneficial to share some of my content and the process, in part because I might as well get the extra credit for writing a blog post on content I have already generated, but also because I feel that transparency can improve my competency and academia in general.

Red marker drawing a line.

Incorporating the pandemic into teaching curricula

Not only is the ongoing ‘COVID-19’ pandemic a collective experience and historical event, it has changed the way we interact with each other and with our infrastructure. It’s pertinent to incorporate these events into teaching curricula, not only to study these changes in real time, but to help us make sense of what is happening during these difficult days. A number of faculty at the University of Maine have been and will be integrating various aspects of the pandemic into their teaching. For my part, I’ll be guiding students on research projects related to how COVID-19 and public policy has affected agriculture and veterinary practice.

“COVID has very suddenly and dramatically changed the way we interact with each other, and has had repercussions for food, agriculture and animal care industries,” Ishaq says. “Students need to understand these changes to build more resilient and sustainable food and health care systems.”

“Faculty incorporate COVID-19 content into curricula”, Marcus Wolf, June 23, 2020

Featured Image Credit: Miriam Webster

New course approved: AVS 454-554 DNA Sequencing Analysis Lab

A second course that I developed was accepted at the University of Maine! AVS 454-554 DNA Sequencing Data Analysis will be offered to undergraduate and graduate students starting Spring 2021.

AVS 454-554 teaches bioinformatics using DNA data. Starting with raw DNA sequencing data, students go through the process of quality assurance, statistical analysis, graphics design, as well as drafting a scientific manuscript. The course integrates research into teaching by using unpublished data, ideally data the students bring from their own research projects. Not only do students learn highly sought-after analytical and scientific writing skills, but it makes them active participants in research and their own learning. Most of the course time and skillset are focused on amplicon sequencing data, but we’ll also dabble with whole-genome, metagenomics, and metatranscriptomics.

Along with my Introduction to Animal Microbiomes course, I hope to get students interested in microbial ecology earlier in their studies, such that they have time to get involved with microbial ecology research in Maine in time for them to develop a Capstone research experience around it in their senior year. And what a coincidence, I’ll be teaching the Capstone courses for AVS (401 and 402) starting in fall 2020, as well.

This course is based on the precursor version, AVS 590, which I taught as a small, special topics version in the 2020 spring semester. And, even that is conceptually based on a lab section I taught at Montana State University in 2015 and 2016. DNA data analysis and I go way back.

Photo credit: Tom Rayner, Tenure Chasers

It can take several months to get course proposals approved, especially if you are proposing they meet general education requirements, are listed as required for a major degree, or have other levels to them. I started Sept 1, and the AVS faculty curriculum committee, the first step in the approval process, was meeting in early October. I didn’t have time to develop two course proposals in time, so I first proposed my data analysis course as a “special topics” version. These versions are offered selectively and are not counted the same way as an approved course. But, it gave me time to shore up my teaching materials, and teach several students who were graduating and couldn’t wait another year to learn these skills.

DNA sequencing data analysis is challenging to teach as well as to learn, but once over the learning curve, it can be extremely fun and rewarding. I’ve previously taught bioinformatics to undergraduates, and have or continue to publish with a number of them. In AVS 590 in the 2020 semester, there were 4 datasets being analyzed, and 3 of those led to manuscripts which are anticipated to be submitted to for review in scientific journals sometime this year!

R coding group at the University of Oregon, 2018

Woman dressed in a costume of a dissected cat, to teach a class on Halloween.

Teaching students to give scientific presentations

This semester at UMaine, I’m teaching a section of AVS633/FSN671 Graduate Seminar, for students in the Animal and Veterinary Science and the Food Science and Nutrition grad programs. Naturally, I decided to spice up the course requirements.

In all the presentations I have given; during classes, teaching, as public lectures, guest seminars, and conference proceedings, I’ve faced a great deal of technical and audience-related challenges. There is a wealth of information on the formatting and content aspects of building a scientific presentation, but in my experience, that’s only half the battle. The other half is in being able to accurately and interestingly relay that information to your audience. Even in professional settings, I have faced disruptive technical failures that caused me to alter my talk or have to adjust my narrative, and I have fielded poorly-crafted or poorly-intended questions from my audience, all while trying to maintain my composure.

I felt that this was what the graduate students needed to learn, and in a safe space where it was OK to simply, well, give a bad presentation. To convey this, I put together an introduction to the class (below) and a series of assignments.

The Elevator Speech

Their very first assignment was to stand up, with notes but no slides, and give a 3 minute speech on a topic of their choice. It had to be non-technical, and designed to provide information in an approachable way such that the person stuck on the elevator with you would actually want to hear more. As academics, especially when you are a student, you often get caught up in repeating jargon or with having to explain yourself in highly detailed language to faculty who are training and testing you. You forget how to present your work to someone who has absolutely no background, and only a few minutes worth of attention span to devote to hearing about your very niche research question. To give an effective elevator speech, the students needed to distill only the critical information for someone to follow their line of thinking, and to not get bogged down by extraneous detail.

Peer Presentations and Awkward Audience Questions

For the second assignment of the course, each student was required to give a presentation on their research, their program of study, or a specific topic they were interested in and the relevant research. Due to the number of students and course time allotted, this presentation only needed to be 10 minutes long, but I’ve found it can be more difficult to present your material concisely. The students presented as if to a peer audience, so they could use a certain amount of jargon or introduce methods with minimal explanation. This style of presentation is common in graduate school, and as expected, the students all did incredibly well.

To add a challenge here, I instead focused on the audience (in this case, the rest of the class). The thing about being an audience member that most people never think about, is that you also need to conduct yourself with a certain level of professionalism. It might not be polite to shout a question or snarky response in the middle of a presentation, your comments might seem complementary but are in fact back-handed, or your question might simply be poorly crafted. I have been asked, or been witness to, a lot of poorly-worded audience questions and responses, and I’m not referring to general public audiences, I’m talking about academics who should know better.

To that end, for each student presentation, I gave an index card to another student in the audience to ask or perform during the talk. Participation was voluntary. Some of these are well-meant questions that are simply commonly asked. Others are silly, and some are rude. I didn’t include anything offensive or abusive, but those examples abound. The list is pretty funny, but please, NEVER DO THESE AS A REAL AUDIENCE MEMBER.

  • Ask the speaker if they will be a medical doctor (or veterinarian) after they finish this [research] degree.
  • State that you have a question. Then pose a statement/comment that is not a question.
  • Be on your phone (texting) or overtly not paying attention to the entire presentation.
  • Ask them to explain a simple concept that they covered in their presentation (but that you missed because you weren’t paying attention).
  • Cough or sneeze comically loud, or drop something during the presentation.
  • Ask the speaker how they chose this topic or how they got into this type of research/work. (This seems benign, but can take away from more specific questions during a peer presentation.)
  • Ask if the speaker is familiar with a field/event/discovery that is somewhat related to their presentation but not actually in their presentation.  Example, speaker presents about infectious disease in cattle and you ask them about “cow farts and global warming”.
  • Comment that the speaker looks really young for someone in their position.  Example: “Wow, I thought you were an undergrad! You look really young. I mean, that’s a compliment.”
  • Get up during the presentation and adjust the lights or shades in the room. You don’t have to make them better, just change them.
  • Ask the speaker a multiple part question. They can be simple questions, but ask them all in one, long, run-on sentence.
  • Begin your question with “As a parent,….” even if you are not a parent and the question has nothing to do with being a parent. 
  • Ask the presenter who analyzed their data for them (even if they have already said they analyzed it themselves).
  • Tell the speaker that their method is not valid (but don’t explain why).
  • Tell the speaker: “This was a pretty good presentation. When you have been in grad school a few more years I think you’ll be a really good speaker.”
  • Tell the speaker that this kind of work has been done before and ask what they have done that is unique.
  • Raise your hand to ask a question, but then sit back, squint your eyes, exhale loudly, pause for a moment, then say, “Never mind”.

The Technical Challenge

On multiple occasions, I have had to give a short (10 min) presentation by memory because the slideshow wouldn’t open or advance. I have had poor lighting, or poor color contrasting from the projector, which made it difficult to read my slides. I have had projection screens which were much smaller than I anticipated such that my text was too small to read on figures, and I’ve more or less given up the hope that I will routinely encounter “presenter mode” when using podiums or other people’s machines. I’ve had a projector that kept shorting out during the talk and creating blank screens for 10 seconds, something which you can hear me talk about in the lecture recording but not see on the recorded slides. I’ve had my available time cut in half, had to cut my presentation short because I included too much detail, realized I had poorly organized the presentation of material or forgotten to define a critical aspect, been unable to play videos or animations, had hand-held slide advancers with low batteries, had automatic slide advance turned on by mistake, and more.

When you face these surprises during a talk, you often don’t have the time, never mind the presence of mind, to resolve the problem. You simply have to make the best of it before your time runs out. It helps to know your material, but it also helps to be able to improvise, which is a skill best developed in practice. You might need to fill air time, or reconstruct your presentation on the fly, or make light of the situation to cut the tension in the room. To help my students prepare, I asked them to send me their peer presentation, as I wanted them to use a presentation they had just given and were familiar with. Then, I introduced mistakes into the presentation without disclosing what those might be, only that they would be there.

To think up enough technical problems I could use, I enlisted the help of scientists on twitter. Click on the Tweet below to find the thread and see the other contributions from @HannahMLachance, @canda007, @Wymelenberg, @vaughan_soil, @murphyc1928, @cskrzy, @maria_turfdr, @mcd_611.

I came up with this non-exhaustive list:

  • Replace a video with a still shot
  • Have 2 students make slides on the same topic, then have them present the other one’s slides (to simulate when a co-author gives you some slides on their contribution and you forget what they mean).
  • Reorder some of the slides
  • Remove a lot of the text on the slide
  • Resize images to be too small for audience to see resolution
  • Introduce blank slides to simulate projector connection issues (like screen flickering on/off occasionally)
  • Ppt won’t open at all or won’t advance beyond title slide
  • Change font on all text to tight cursive
  • No ‘presenter mode’ available
  • Resize slide dimensions and don’t adjust proportions to ensure fit
  • Turn laptop around so can’t see screen as if presenting at a podium
  • Add animations to everything
  • Add notification of email on timer (created a shape with animated pop in and out, as well as notification chime).
  • No photos
  • Slide advancer with poor quality batteries
  • Automatic slide advance

Public Presentations

Public presentations are an overlooked part of academia, but a crucial aspect. If you are at a public university, or you receive state or federal funding, your work is being supported by tax dollars. Many federal grants require an outreach or public education portion to your project, where you make the results available to interested parties (called stakeholders). Science communication is also extremely important in bridging the divide between scientific and public communities.

Public presentations need to present information approach-ably. I don’t mean they need to talk down to people, I mean they need to consider that the audience might not have a frame of reference for what you are talking about. I have a PhD, but it’s meaningless if I attend technical lectures on physics. For the third challenge in class, students can give their presentation again but with the knowledge that they can’t throw 20 slides worth of dense information at their audience, they can’t use technical language without defining it, and that sometimes the best way to explain complicated information is using pictures or analogies.

Update: In light of Corvid-19 concerns, campuses have been closing and switching over to remote instruction. This was rather challenging to do well with a presentations class, as giving a webinar isn’t the same as giving a public presentation. To be more creative, I am having students submit their public presentation slides online. I then assign them to another student, who has to annotate the ‘presenter notes’ with the speech of how they would present these slides. I then return the annotated version to the original presenter so they can see how well their slides spoke for themselves. In this “presentation telephone game”, I hope they will see how easy their slides were translatable to someone else, which is a common problem in slides put online without any notes or audio: so much gets lost when the presenter isn’t providing the information and filling in the additional information that is only briefly noted on the slides.

Learning (to Pretend) to Enjoy Giving Presentation

You can’t always control the technical aspects of your talk, or select your audience, or even be prepared for the weather that day. You won’t always be well-rested, or in good health, on the day of. Fun fact about stress, it can trigger spotting or early menstruation. There’s nothing quite as terrifying as being in the middle of your presentation when you are suddenly aware that you have a limited amount of time to get off stage and hope that there are feminine products available for free in the nearest restroom, because your women’s dress pants don’t have pockets for you to carry quarters for the dispensary machines.

You won’t always have time to prepare. Once, I had 5 minutes of notification that I would have to stand up in front of 50 – 75 other college students and Jane Goodall and present a recap on a service-learning course, at a time when I dreaded any and all public speaking. But you can’t really decline the offer to talk in front of Jane Goodall when she had taken the time and effort to be in the room to listen to you all. So you just have to stand up and start talking before you convince yourself you can’t do it.

You can have faith in yourself, know that you will try your best, and remind yourself that it will be good enough. I’ve been an audience member at perfect presentations, and I remember that it went really well and nothing at all about the content. The talks that I remember most are the ones where the speaker connected with me. They were funny, they were humanizing, and they took technical problems and awkward interactions in stride.

The best way to become a better speaker, I think, is to be open to the idea that you are going to mess up. A lot. But each time, you will learn from that experience, you will ask for feedback, and you get back out there. As academics, we have to present information on nearly a daily basis. It is, in fact, a significant part of the job. So instead of dreading it, we should at least pretend to enjoy it until, one day, we find that we do.

Perspective on developing curricula

At the University of Maine, I am currently developing two new courses based on similar material I’ve taught previously at the University of Oregon and Montana State University. I’ve written about several of those classes, including a retrospective after teaching ‘Introduction to Mammalian Microbiomes’ to humanities students. Here, with the spring semester commencing this week, I thought I would share my approaches to developing coursework. While a class doesn’t stand on organizational physique alone, it can go a long way to facilitating your communication with your students, their understanding of course expectations, and their ability to assimilate the information you are disseminating.

Organization of materials

The nature of my teaching means means that I don’t assign readings from a textbook, I curate reading lists for my students from current scientific literature, which changes a little each year. Because of this, and the need for file management, I have a few tricks. First, I have a folder (on my computer and the online teaching tool) specific to readings for that class. I curate the file name with first author, year, and few words from the title so I can keep track of what it is (ex. Zhulin_2015_databases_review). I duplicate that file name in my syllabus, so I can copy and paste instead of writing it out again.

I format my syllabus as a table, and add each reading to the day on which it is assigned. If I move lectures around, I move the whole table row, so I can migrate assignments and readings along with lecture titles. Lastly, because the readings are specific to lecture and date assigned, I mimic that order in my file names by numbering them all instead of leaving them in alphabetic order (ex. 10_Zhulin_2015_databases_review), to facilitate knowing when and which is assigned.

And I don’t just number them by order, I number them by lecture so students or I can just match the lecture number across the lecture files, assigned readings, etc.

Written assignments (when logistically possible)

A stack of papers facedown on a table.

There’s no easy way to grade written assignments from students, but I prefer it to exam-style assessments. Particularly in teaching microbial ecology and sequencing data analysis, there’s not a lot of strict memorization like there is in anatomy. The material lends itself more to critical thinking and debating theory, to presenting a scientific argument, to problem solving, or to composing mock scientific manuscripts. In allowing students the word count to work through their thoughts, they are able to find the words to express their opinion on, say, the Hygiene Hypothesis when only weeks before they didn’t know that some microbes can turn the immune system on or off.

Written assignments allow me to give them feedback, including grammatical corrections, suggestion on sentence structure, pointing out leaps of logic where they left readers behind, and of course, on the strength of the scientific argument. This is particularly helpful when learning to write technical science.

Red pen.
Photo credit: Merriam-Webster

In giving students the agency to choose a topic to write about from the curricula tasting menu I’ve provided in my lectures, I receive back more information than just what I provided, which keeps things interesting for me. And, in giving them assignments which practice their writing voice, I witness their progression towards mature scientific writing.

Stacking assignments for improved retention

It takes time to become familiar with new information. That’s why school subjects are taught multiple times, or in specific orders, as you progress through education. I have 13 – 15 weeks in a semester (or 10 in a quarter!) to on-board students and teach them a skill. For most of the students I have taught, my class is their first introduction, or their first formal introduction, to the subject.

Especially for my host-associated microbial courses, there are hundreds of years-and-counting worth of history which led us to our current understanding of the microbes that inhabit us. Without that history, an explanation of the available technology, and a discussion of how that technology shaped the view we had, I can’t do justice to the majority of the coursework where I explain how we discovered the relationship between salivation and the microbial community geography in your mouth. The first section of my ‘host-associated’ course includes this background information, and a discussion of current technology, which is reiterated when later discussing literature and how technological shortcomings can hamper our understanding of a microbial community.

To give students more time to practice the material, I give related readings, have a guided discussion at the end of lectures, and stack assignments. Students start with a non-technical summary of a paper; 1-ish paragraph where they have to introduce the paper and why it was done, the methods used, and a major result or two. Trying to explain a complex experiment in simple terms is a great way for students to gain familiarity. When it comes time to write a two-page essay for a take-home exam, I allow the students to build off those summaries, if they choose.

An inclusive syllabus

A syllabus is a document which encompasses the important information for the class, including meeting times and rooms, grading policy, lecture and assignment schedule, required reading materials, and more. It can be used to recruit students to sign up for the class, and once in attendance, it’s the first impression students have. It’s where they refer for questions about the course, what’s expected of them, and where to find instructions on assignments. I write my syllabi in a way that makes sense to me, the instructor, and I welcome feedback from students when my instructions are confusing. But, I also welcome feedback from different student populations in order to make the language and presentation of the document more approachable. Sometimes you just need something to break the ice. Like a paper turkey hat.

Sue wearing a paper hat shaped like a turkey.
Wearing the turkey hat that my mentee and I made.

I haven’t actually worn a turkey hat to teach a class, that’s too informal. I dress up like an anatomically-annotated dissected cat, because I’m a professional. Or, I ran regular class discussions that occasionally got heated and were monopolized by a fraction of the class. The next year, I took a stronger moderator stance and would impose more restrictions (“Ok the next comment HAS to use the word “microbes”). I don’t like calling on students, so the next time I have discussions I think I’m going to give them all D20 dice and have them roll for initiative on the order of presenting comments. I also added this to my syllabi:

Class participation: Students are expected to participate in discussions in class.  I strive to create inclusive discussions, but if students still find it challenging to participate please notify me and I will alter the discussion format as needed.

AVS 590 Syllabus spring 2020

Most universities also require text or links to their campus policies, driven by federal, state, or university law. These include a statement about accommodations for disabilities, although many faculty are happy to make accommodations without the student receiving prior approval. I started allowing students to occasionally attend lectures by video conferencing, if they notified me ahead of time. It allowed students who were ill or traveling to keep pace with the material, and I have even remotely conference-videoed in to a student’s laptop to present when I was home sick but didn’t want to cancel class.

New this year, I’ve included text about students missing classes for parenting or caregiving responsibilities, something I don’t currently participate in, so it was not something I thought to include information on until someone else (Jenn Perry) gave me their perspective. Now I have this:

Pregnancy, lactation, and parenting: I am happy to make accommodations for students based on pregnancy, lactation, and parental needs, as well as work with the Office of Equal Opportunities. Maine state and UMaine policy allows students to breastfeed in any space, including in class. If a lactation space is required, please contact E.O. for arrangements.

AVS 590 Syllabus spring 2020

Similarly, a tweet by Dave Baltrus about including inclusive statements such as information for food insecure students led me to add this:

Food insecure? Need clothes? Check out the Black Bear Exchange’s Food Pantry: https://umaine.edu/volunteer/black-bear-exchange/ or Old Town Crossroads Ministry.

AVS 590 Syllabus spring 2020

And finally, I added text about mandatory reporting. As a public university employee, I am obligated to notify the University of Maine Title IX office about criminal actions towards or by anyone on campus. If a student reveals information to me, I have to pass it on to the Title IX office which will then discretely reach out to the student with resources. The office advocates for anyone on campus, but they are particular important in situations involving students who are low on the power scale and cannot advocate for themselves. While my door is always open to students looking for help, I felt it was important for them to know that I might not be able to keep the meeting confidential.

Inclusiveness in the classroom is important to me, because if students don’t feel welcome, comfortable, and free from hunger, they can’t learn. Despite what opponents think, this doesn’t involve “coddling” or “being too soft”. It means being realistic in my expectations about how people learn and what else they are dealing with that might be inhibiting that. It means that I learn to be more proficient at communication and personnel management, which are vital skills for academics. And it means that we all elevate our skills together.

Silhouettes of four people jumping in a dark cave.

Microbes and social equity preprint available!

Framing the discussion of microorganisms as a facet of social equity.

Suzanne L. Ishaq1,2*, Maurisa Rapp2,3, Risa Byerly2,3, Loretta S. McClellan2, Maya R. O’Boyle2, Anika Nykanen2, Patrick J. Fuller2,4, Calvin Aas2, Jude M. Stone2, Sean Killpatrick2,4, Manami M. Uptegrove2, Alex Vischer2, Hannah Wolf2, Fiona Smallman2, Houston Eymann2,5, Simon Narode2, Ellee Stapleton6, Camille C. Cioffi7, Hannah Tavalire8

  1. Biology and the Built Environment Center,  University of Oregon
  2. Robert D. Clark Honors College, University of Oregon
  3. Department of Human Physiology, University of Oregon
  4. Charles H. Lundquist College of Business, University of Oregon
  5. School of Journalism and Communication, University of Oregon
  6. Department of Landscape Architecture, University of Oregon
  7. Counseling Psychology and Human Services, College of Education, University of Oregon
  8. Institute of Ecology and Evolution, University of Oregon

Abstract

What do ‘microbes’ have to do with social equity? On the surface, very little. But these little organisms are integral to our health, the health of our natural environment, and even impact the ‘health’ of the environments we have built. Early life and the maturation of the immune system, our diet and lifestyle, and the quality of our surrounding environment can all impact our health. Similarly, the loss, gain, and retention of microorganisms ⁠— namely their flow from humans to the environment and back⁠ — can greatly impact our health and well-being. It is well-known that inequalities in access to perinatal care, healthy foods and fiber, a safe and clean home, and to the natural environment can create and arise from social inequality. Here, we frame access to microorganisms as a facet of public health, and argue that health inequality may be compounded by inequitable microbial exposure.


In just a four-week course, I introduced 15 undergraduates from the University of Oregon Clark Honors College to microorganisms and the myriad ways in which we need them. More than that, we talked about how access to things, like nutritious foods (and especially fiber), pre- and postnatal health care, or greenspace and city parks, could influence the microbial exposures you would have over your lifetime. Inequalities in that access – such as only putting parks in wealthier neighborhoods – creates social inequity in resource distribution, but it also creates inequity in microbial exposure and the effect on your health.

By the end of the that four weeks, the students, several guest researchers, and myself condensed these discussions into a single paper (a mighty undertaking, indeed).

And now that I’ve found a preprint server that accepts reviews/commentaries, it’s available for preview! The paper is currently under review and will be open-access when eventually published.

During the course, a number of guest lecturers were kind enough to lend us their expertise and their perspective:

“Microbes and social equity”: I’m teaching a new UO Honors College summer course!

I’ll be teaching a new course for the UO Clark Honor’s College this summer!

Course Description: Microbes and social equity

This colloquium course introduces students to current knowledge on selected host-associated or human-associated microbiomes, and uses that base knowledge to discuss their relevance to human health in the context of social equity.  Example topics include the effect of diet on the microbial community in the gut and the importance of nutrient composition of free school lunches; maternal stress and the effect on offspring physiology, immune development, and host-microbial interactions; microbial communities in air, air quality, and income-based housing; building quality, indoor microbiology, and enforced occupancy (ex. prisons or public schools); and more. Guest lectures from relevant experts will be included as possible.

Some background in microbial ecology, genetics, anatomy, immunology, or sociology would be helpful, but is not required.  While difficult concepts will be discussed, the course is intended to teach students about the basic principles and how to apply them to contemporary social issues: what is a microbiome? How does host anatomy and health drive microbial ecology?  How does environmental microbiology and building microbiology contribute to or impinge on health? When we read about host-associated microbiomes in the news, especially regarding health, how can we assess if the study is rigorous and how should we interpret the scope of the findings?  The skill-set objectives include learning to review scientific journal articles, distilling their findings while understanding their limitations, and developing science communication skills via written assignments and in-class discussions.