Paper published on viable bacteria around hospital windows!


In a 2019 collaboration between the Biology and the Built Environment Center at the University of Oregon and the Oregon Health & Sciences University, we sampled various window surfaces from patient rooms in a hospital ward. We characterized the viable bacterial community located on these surfaces, and investigated the association of relative light exposure of the surface (in direct light or not), the cardinal direction of the room (and roughly the amount of total light exposure in a day), and proximity of the patient room to the nurses’ station (which has higher occupancy and traffic).

This image has an empty alt attribute; its file name is figure1.jpg
Figure 1. Floor plan and rendering of a typical patient room at the Oregon Health and Science University hospital. (a) Floor plan of the 13th floor of Kohler Pavilion (13K) at Oregon Health and Science University (OHSU). Red shading indicates the rooms that were sampled between 10:00 a.m. and 11:00 a.m. on June 7, 2019 (b) Digital rendering of a typical patient room on OHSU (13K) with the sampling locations indicated by the numbers. The sampled locations were (1) window glass surface, (2) the window frame surface facing into the room at the sill, (3) glazing-side of the window frame at the sill, (4) window-side of the curtain, (5) patient-side of the curtain and, (6) wood-covered air return grille.

The microbial community found in buildings is primarily a reflection of the occupants, and in the case of hospitals, the microbiota may be sourced from patients, staff, or visitors. In addition to leaving microbiota behind, occupants may pick up microorganisms from building surfaces. Most of the time, this continuous exchange of microorganisms between a person and their surroundings is unremarkable and does not raise concerns. But in a hospital setting with immunocompromised patients, these microbial reservoirs may pose a risk.  Window glass, sills, and the surfaces around windows are often forgotten during hospital disinfection protocols, and the microbial communities found there have not previously been examined.

This paper is the first first-authored research paper from a former undergraduate mentee of mine at the University of Oregon; Patrick Horve.


Horve, P.F., Dietz, L., Ishaq, S.L., Kline, J., Fretz, M., Van Den Wymelenberg, K. 2020. Viable bacterial communities on hospital window components in patient rooms. PeerJ 8: e9580. Impact 2.353. Article.

Woman with yellow background in a video meeting.

Microbes and Social Equity presentation at IHBE Build Health 2020 virtual meeting

I presented at my first virtual conference; the Institute for Health in the Built Environment Build Health 2020 industry consortium meeting on May 14, 2020.

Comprised of the Biology and the Built Environment Centerthe Energy Studies in Buildings Laboratory, and Baker Lighting Lab, IHBE connects researchers, practitioners, and designers engaged in creating healthier buildings. For the past few years they have hosted a mini-conference in Portland, Oregon in May, but this year a virtual format was a safer choice.

IHBE meeting organizers did a fantastic job at facilitating a remote meeting with a dozen speakers across multiple time zones. This included creating formatted slide decks for speakers to populate, coordinating sections by colors and symbols and providing respective virtual backgrounds for section speakers to use, and use of breakout rooms for smaller discussion groups.

I presented “Framing the discussion of microorganisms as a facet of social equity in human health“, and you can find a recorded version of the presentation here. There are no closed captions, but you can read the audio as annotations here:

The concept of “microbes and social equity” is one I’ve been playing with for a little over a year, and has developed into a colloquium course at the University of Oregon in 2019, an essay in PLoS Biology in 2019, and a consortium of researchers participating in “microbes and social equity part 2”. The Part 2 group has been developing some exciting research events planned for later in 2020, and those details will be forthcoming!

Where Art Meets Science

The Nature Lab at Rhode Island School of Design is presenting an exhibition on the interface of biology and art; Biodesign: From Inspiration to Integration.  Curated in collaboration with William Myers, the show is part of their 80th anniversary celebrations. The exhibition runs from Aug 25—Sept 27 at the Woods Gerry Gallery, and will feature photos and sampling equipment from the Biology and the Built Environment Center.

 

Biodesign: From Inspiration to Integration

OPENING RECEPTION

An exhibition curated by William Myers and the RISD Nature Lab, this show features the following works:

Hy-Fi and Bio-processing Software—David Benjamin / The Living
Mycelium architecture, made in collaboration with Ecovative and 3M.

Zoa—Natalia Krasnodebska / Modern Meadow
Leather grown using yeasts that secrete collagen, and grown completely without animal derivatives.

The Built Environment Microbiome—BioBE Center / Jessica Green, Sue Ishaq and Kevin Van Den Wymelenberg
The BioBE conducts research into the built environment microbiome, mapping the indoor microbiome, with an eye towards pro-biotic architecture.

Zea Mays / Cultivar Series—Uli Westphal
Newly commissioned corn study, this project highlights maize’s evolution through interaction with humans.

Harvest / Interwoven—Diana Scherer
Artist coaxes root systems plant root systems into patterns.

Fifty Sisters & Morphogenesis—Jon McCormack
Artist algorithmically generates images that mimic evolutionary growth, but tweaks them to include aesthetics of the logos of global petroleum producing corporations.

Organ on a Chip—Wyss Institute
Wyss Institute creates microchips that recapitulate the functions of living human organs, offering a potential alternative to animal testing.

AgroDerivatives: Permutations on Generative Citizenship—Mae-Ling Lokko
This project proposes labor, production criteria and circulation of capital within agrowaste/bioadhesive upcycling ecosystems.

New Experiments in Mycelium—Ecovative
Ecovative makes prototypes of mycelium items such as insulation, soundproofing tiles, surfboards, lampshades.

Bistro in Vitro—Next Nature Network
Performance with speculative future foods samples. The installation will include video screens and a cookbook on a table display.

Raw Earth Construction—Miguel Ferreira Mendes
This project highlights an ancient technique that uses soil, focusing on how soil is living.

Burial Globes: Rat Models—Kathy High
This project presents glass globes that hold the ashes of the five HLA-B27 transgenic rats, each one named and remembered: Echo, Flowers, Tara, Matilda, Star.

To Flavour Our Tears—Center for Genomic Gastronomy
Set up as an experimental restaurant, this project places humans back into the foodchain — investigating the human body as a food source for other species.

Blood Related—Basse Stittgen
A series of compressed blood objects—inspired by Hemacite objects made from blood/sawdust compressed in a process invented in the late 19th century—highlights bloodwaste in the slaughterhouse industry.

Silk Poems—Jen Bervin
A poem made from a six-character chain represents the DNA structure of silk, it refers to the silkworm’s con-structure of a cocoon, and addresses the ability of silk to be used as a bio sensor, implanted under people’s skin.

Zoe: A Living Sea Sculpture—Colleen Flanigan
Zoe is an underwater structure, part of coral restoration research, that regenerates corals in areas highly impacted by hurricanes, human activity and pollution.

Aquatic Life Forms—Mikhail Mansion
Computationally generated lifeforms animated using motion-based data captured from Arelia aurita.

Algae Powered Digital Clock—Fabienne Felder
By turning electrons produced during photosynthesis and bacterial digestion into electricity, algae will be used to power a small digital clock.

A Place for Plastics—Megan Valanidas
This designer presents a new process of making bioplastics that are bio-based, biodegradable AND compostable

Data Veins & Flesh Voxels—Ani Liu
This project explores how technology influences our notion of being human from different points of view, with a focus on exploring the relationship between our bodies as matter and as data.

Pink Chicken Project—Studio (Non)human (Non)sense/ Leo Fidjeland & Linnea Våglund
By changing the color of chickens to pink, this project rejects the current violence inflicted upon the non-human world and poses questions of the impact and power of synthetic biology.

August 24
5:30 pm – 7:30 pm
Woods Gerry Gallery, 62 Prospect Street, Providence, RI 02903

What is academic Outreach/Extension?

Service can be a vaguely defined expectation in academia, but it’s an expectation to give back to our community; this can be accomplished in different ways and is valued differently by institutions and departments.  Outreach is an easily neglected part of science, because so often it is considered non-essential to your research.  It can be difficult to measure the effectiveness or direct benefit of outreach as a deliverable, and when you are trying to hoard merit badges to make tenure and your time is dominated by other responsibilities, you often need to prioritize research, teaching, advising, or grant writing over extension and service activities.  Nevertheless, public outreach is a vital part to fulfilling our roles as researchers.  Academic work is supported by public funding in one way or another, and much of our research is determined by the needs of stakeholders, who in this sense are anyone who has a direct interest in the problem you are trying to solve.

Depending on your research field, you may work very closely with stakeholders (especially with applied research), or not at all (with theoretical or basic research).  If you are anywhere in agriculture, having a relationship with your community is vital.  More importantly, working closely with the public can bring your results directly to the people out in the real world who will benefit from it.

A common way to fulfill your outreach requirement is to give public presentations.  These can be general presentations that educate on a broad subject, or can be specifically to present your work.  Many departments have extension specialists, who might do some research or teaching but whose primary function is to connect researchers at the institution with members of the public.  In addition to presentations, extension agents generate newsletters or other short publications which summarize one or more studies on a specific subject.  They are also a great resource for networking if you are looking for resources or collaborations, for example if you are specifically looking for farms in Montana that grow wheat organically and are infested with field bindweed.

For my new job, I’m shifting gears from agricultural extension to building science and health extension.  In fact, the ESBL and BioBE teams at the University of Oregon have recently created a Health + Energy Research Consortium to bring university researchers and industry professionals together to foster collaborations and better disseminate information.  The goals of the group at large are to improve building sustainability for energy and materials, building design to serve human use better, and building microbiology and its impact on human health. I have a few public presentations coming up on my work, including one on campus at UO on Halloween, and one in February for the Oregon Museum of Science and Industry Science Pub series in February.  Be sure to check my events section in the side bar for details.

Even when outreach or extension is not specified in your job title, most academics have some level of engagement with the public.  Many use social media outlets to openly share their current work, what their day-to-day is like, and how often silly things go wrong in science.  Not only does this make us more approachable, but it’s humanizing.  As hard as scientists work to reach out to the public, we need you to reach back.  So go ahead, email us (please don’t call because the stereotype is true: we really do hate talking on the phone), tweet, post, ping, comment, and engage with us!!

 

This slideshow requires JavaScript.

‘Round up of ESA conference’ reblog

Check out my round-up post about the Biology and the Built Environment Center crew at the Ecological Society of America meeting in August:

Source: Round up of ESA conference

I’m now writing for the UO BioBE blog

The Biology and the Built Environment center here at the University of Oregon has a blog, and I’ll be writing updates and blog posts for them, as well.  I will be cross-posting my posts, but you should also check them out!

My first week at the University of Oregon

0609171533c
My new work home.

Last week was my first week as a Research Assistant Professor in the Biology and the Built Environment Center (BioBE) at the University of Oregon, and my first full week in Eugene.  Combined with the Energy Studies in Buildings Laboratory, our collaborative team of architects and biologists researches how to make buildings more efficient, sustainable, pleasant, and healthy.

0605170809.jpg
Delta Ponds, along my new bike route to work.

My first day started auspiciously as I charted a new bike route to work, about 4.5 mi of which is along a path snaking next to the Willamette River.  It goes through several parks, and by a few small lakes and swamps which are home to dozens of species of birds, mammals, amphibians, and reptiles.  I haven’t seen any river otters yet, but I have been keeping a close eye out.

Arriving on campus, most of my first day, and first week, were spent visiting the various places around campus to get myself established as a new employee- obtaining my ID card and email address, filing out paperwork, attending orientation, and finding all the coffee places within walking distance of the building.  ESBL is renovating and expanding its offices across several large, pluripotent rooms to accommodate a growing research team, so I got a brand new standing desk, chair, shelving, and computers (on order), all to my specifications.  The flexibility of working position, screen size, and screen angle provided by my new station are comfortable and great for productivity, and it’s neat to design the new space into offices, meeting tables, and storage which are based on our personalized usage needs and preferences.  And of course, there is plenty of space for all the mementos and science toys I’ve accumulated.

Most importantly, my first week was spent acclimating to my new department and getting up to speed on the ongoing and planned projects.  BioBE and ESBL have dozens on ongoing or planned projects on the built environment, with a combination of building and biology facets.  Over the course of the summer, I’ll be writing several grants and organizing new projects that explore how building use, occupancy, and human habits affect human health and the indoor microbiome, as well as contributing to the BioBE blog,  providing building microbiome posts to Give Me the Short Version, and getting some older projects out for publication.  On top of that, I’m looking forward to exploring the Pacific coast and the Northwestern landscape, and availing myself of the Willamette Valley wine industry.

325A2455.JPG
Photo Credit: Alen Mahic