Last year, one of my former research groups at Montana State University was awarded a USDA NIFA Foundational program grant, and I am a sub-award PI on that grant. We’ll be working together to investigate the effect of diversified farming systems – such as those that use cover crops, rotations, or integrate livestock grazing into field management – on crop production and soil bacterial communities: “Diversifying cropping systems through cover crops and targeted grazing: impacts on plant-microbe-insect interactions, yield and economic returns.”
The first soil samples were collected in Montana this summer, and I have been processing them for the past few weeks. I am using the opportunity to train a master’s student on microbiology and molecular genetics lab work.
Montana field soil. Prepped for DNA extraction.
Tindall Ouverson started this fall as a master’s student at MSU, working with Fabian Menalled and Tim Seipel in Bozeman, MT. She’s an environmental and soil scientist, and this is her first time working with microbes. She was here in Eugene for just a few days to learn everything needed for sequencing: DNA extraction, polymerase chain reaction, gel electrophoresis and visualization, DNA cleanup using magnetic beads, quantification, and pooling. Despite not having experience in microbiology or molecular biology, Tindall showed a real aptitude and picked up the techniques faster than I expected!

Gel electrophoresis: using electricity to move DNA. DNA is negatively-charged, it will move towards a positive cathode. The speed of DNA is related to how large it is.
Once the DNA has moved through the gel, we can see it using UV light. Each band represents a lot of DNA of a certain size, that all traveled at a certain pace through the gel.
Once the sequences are generated, I’ll be (remotely) training Tindall on DNA sequence analysis. I’ll also be serving as one of her thesis committee members! Tindall will be the first of (hopefully) many cross-trained graduate students between myself and collaborators at MSU.